【題目】如圖,CD為⊙O的直徑,AB,AC為弦,且∠ADC=DAB+ACD,ABCDE點.

1)求證:AB=AC

2DF為切線,若DE=2,CE=10,求cosADF的值.

【答案】1)見解析;(2

【解析】

1)根據(jù)圓周角定理即以及等腰三角形的判定即可求出答案.

2)連接AO并延長交BC于點G,連接BD,根據(jù)切線的性質(zhì)以及銳角三角函數(shù)的定義即可求出答案.

1)由圓周角定理可知:∠ADC=B,∠DAB=DCB,

∵∠ADC=DAB+ACD

∴∠ADC=DCB+ACD,

∴∠B=ACB

AB=AC

2)連接AO并延長交BC于點G,連接BD

DF為切線,

∴∠CDF=90°

∴∠ADF=ACD,

DE=2,CE=10,

CD=12,

OD=OA=6

OE=ODDE=4,

CD是⊙O的直徑,

∴∠DAC=DBC=90°,

BDAG

∴△BDE∽△AOE,

BD=3,

OGBCD的中位線,

OG=,

RtOCG中,

由勾股定理可知:CG=

RtAGC中,

由勾股定理可知:AC=3

cosADF=cosACD=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】隨著信息技術的迅猛發(fā)展,人們?nèi)ド虉鲑徫锏闹Ц斗绞礁佣鄻、便捷.某校?shù)學興趣小組設計了一份調(diào)查問卷,要求每人選且只選一種你最喜歡的支付方式.現(xiàn)將調(diào)查結(jié)果進行統(tǒng)計并繪制成如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中所給的信息解答下列問題:

(1)這次活動共調(diào)查了   人;在扇形統(tǒng)計圖中,表示支付寶支付的扇形圓心角的度數(shù)為   ;

(2)將條形統(tǒng)計圖補充完整.觀察此圖,支付方式的眾數(shù)   ”;

(3)在一次購物中,小明和小亮都想從微信”、“支付寶”、“銀行卡三種支付方式中選一種方式進行支付,請用畫樹狀圖或列表格的方法,求出兩人恰好選擇同一種支付方式的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一天清晨,甲、乙兩人在一條筆直的道路上同起點、同終點往返跑步.甲跑了分鐘后乙再出發(fā),當乙追上甲時,甲加快速度往前跑,先到達終點后立刻以加快后的速度返回起點.已知甲加速前、后分別保持勻速跑,乙全程均保持勻速跑下圖是甲乙兩人之間的距離(米)與甲跑步的時間(分)的部分函數(shù)圖象.則當乙第一次到達終點時,甲距起點______米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A是射線yx≥0)上一點,過點AABx軸于點B,以AB為邊在其右側(cè)作正方形ABCD,過點A的雙曲線yCD邊于點E,則的值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,△ABE為等邊三角形,連接DE,CE,延長AECDF點,則∠DEF的度數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩人在筆直的湖邊公路上同起點、同終點、同方向勻速步行2400米,先到終點的人原地休息.已知甲先出發(fā)4分鐘,在整個步行過程中,甲、乙兩人的距離y(米)與甲出發(fā)的時間t(分)之間的關系如圖所示,下列結(jié)論:

甲步行的速度為60米/分;

乙走完全程用了32分鐘;

乙用16分鐘追上甲;

乙到達終點時,甲離終點還有300米

其中正確的結(jié)論有( 。

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=x2+bx+c經(jīng)過△ABC的三個頂點,其中點A(0,1,點B(﹣9,10,AC∥x軸,點P時直線AC下方拋物線上的動點.

(1求拋物線的解析式;(2過點P且與y軸平行的直線l與直線AB、AC分別交于點E、F,當四邊形AECP的面積最大時,求點P的坐標;

(3當點P為拋物線的頂點時,在直線AC上是否存在點Q,使得以C、P、Q為頂點的三角形與△ABC相似,若存在,求出點Q的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,關于x的二次函數(shù)yax22axa0)的頂點為C,與x軸交于點OA,關于x的一次函數(shù)y=﹣axa0).

1)試說明點C在一次函數(shù)的圖象上;

2)若兩個點(k,y1)、(k+2,y2)(k≠0±2)都在二次函數(shù)的圖象上,是否存在整數(shù)k,滿足?如果存在,請求出k的值;如果不存在,請說明理由;

3)若點E是二次函數(shù)圖象上一動點,E點的橫坐標是n,且﹣1≤n≤1,過點Ey軸的平行線,與一次函數(shù)圖象交于點F,當0a≤2時,求線段EF的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,ABO的直徑,CD為弦,且CDAB,垂足為H

1如果O的半徑為4CD=,求BAC的度數(shù);

2)若點E為弧ADB的中點,連接OECE.求證:CE平分OCD

查看答案和解析>>

同步練習冊答案