如圖,把△ABC繞點C順時針旋轉25°,得到△A′B′C′,A′B′分別交AC、AB于點D、E,若∠A′DC=80°,則∠A=______°.
∵把△ABC繞點C順時針旋轉25°,得到△A′B′C′,
∴∠ACA′=25°,∠A=∠A′,
∵∠A′DC=80°,
∴∠A=∠A′=180°-∠ACA′-∠A′DC=180°-25°-80°=75°.
故答案為:75.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系中,已知△ABC三個頂點的坐標分別為A(-1,2),B(-3,4),C(-2,9).
(1)畫出△ABC,并求出AC所在直線的解析式.
(2)畫出△ABC繞點A順時針旋轉90°后得到的△A1B1C1,并求出△ABC在上述旋轉過程中掃過的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,P是正方形ABCD內一點,將△ABP繞點B按順時針方向旋轉90°至△CBP′,則PB=3,則PP′的長是( 。
A.3
2
B.3
3
C.3D.不能確定

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,已知扇形OAB的圓心角為72°,半徑為10,將它沿著箭頭所示的方向無滑動滾動到扇形O′A′B′位置時,則點O到點O′所經過的路徑的長為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,邊長為
3
的正方形ABCD繞點A逆時針旋轉30°到正方形AB′C′D′,圖中陰影部分的面積為(  )
A.
3
2
B.3-
3
C.
3
D.3-
3
3
4

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

己知:正方形ABCD.
(1)如圖①,點E、點F分別在邊AB和AD上,且AE=AF.此時,線段BE、DF的數(shù)量關系和位置關系分別是什么?請直接寫出結論.
(2)如圖②,等腰直角三角形FAE繞直角頂點A順時針旋轉∠α,當0°<α<90°時,連接BE、DF,此時(1)中的結論是否成立,如果成立,請證明;如果不成立,請說明理由.
(3)如圖③,等腰直角三角形FAE繞直角頂點A順時針旋轉∠α,當90°<α<180°時,連接BD、DE、EF、FB,得到四邊形BDEF,則順次連接四邊形BDEF各邊中點所組成的四邊形是什么特殊四邊形?請直接寫出結論.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,AMDN,直線L與AM、DN分別交于點B、C.在線段BC上取一點P,直線l繞點P旋轉,寫出變化過程中,直線l與AD、AM、DN圍成的圖形的名稱.(至少寫出三個)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,四邊形ABCD是正方形,△ADF按順時針方向旋轉一定角度后得到△ABE,若AF=4.AB=7.
(1)旋轉中心為______;旋轉角度為______;
(2)求DE的長度;
(3)指出BE與DF的關系如何?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

將兩塊含30°角且大小相同的直角三角板如圖1擺放.

(1)將圖1中△A1B1C繞點C順時針旋轉45°得圖2,點P1是A1C與AB的交點,求證:CP1=
2
2
AP1;
(2)將圖2中△A1B1C繞點C順時針旋轉30°到△A2B2C(如圖3),點P2是A2C與AB的交點.線段CP1與P1P2之間存在一個確定的等量關系,請你寫出這個關系式并說明理由;
(3)將圖3中線段CP1繞點C順時針旋轉60°到CP3(如圖4),連接P3P2,求證:P3P2⊥AB.

查看答案和解析>>

同步練習冊答案