【題目】如圖,在△ABC中,AB=AC,AD⊥BC于D點(diǎn),E、F分別為DB、DC的中點(diǎn),則圖中共有全等三角形 對(duì).
【答案】4.
【解析】試題分析:本題重點(diǎn)是根據(jù)已知條件“AB=AC,AD⊥BC交D點(diǎn),E、F分別是DB、DC的中點(diǎn)”,得出△ABD≌△ACD,然后再由結(jié)論推出AB=AC,BE=DE,CF=DF,從而根據(jù)“SSS”或“SAS”找到更多的全等三角形,要由易到難,不重不漏.
解:∵AD⊥BC,AB=AC
∴D是BC中點(diǎn)
∴BD=DC,
∵AD=AD,
∴△ABD≌△ACD(SSS);
E、F分別是DB、DC的中點(diǎn)
∴BE=ED=DF=FC
∵AD⊥BC,AD=AD,ED=DF
∴△ADF≌△ADE(HL);
∵∠B=∠C,BE=FC,AB=AC
∴△ABE≌△ACF(SAS)
∵EC=BF,AB=AC,AE=AF
∴△ABF≌△ACE(SSS).
∴全等三角形共4對(duì),分別是:△ABD≌△ACD(HL),△ABE≌△ACF(SAS),△ADF≌△ADE(SSS),△ABF≌△ACE(SAS).
故答案為4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知實(shí)數(shù)m滿足m2﹣m﹣2=0,當(dāng)m=時(shí),函數(shù)y=xm+(m+1)x+m+1的圖象與x軸無(wú)交點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,以BC為半徑作⊙B,交AB于點(diǎn)D,交AB的延長(zhǎng)線于點(diǎn)E,連接CD、CE.
(1)求證:△ACD∽△AEC;
(2)當(dāng) = 時(shí),求tanE;
(3)若AD=4,AC=4 ,求△ACE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在△ABC中,AB=AC,∠A=60°,BD⊥AC于點(diǎn)D,DG∥AB,DG交BC于點(diǎn)G,點(diǎn)E在BC的延長(zhǎng)線上,且CE=CD.
(1)求∠ABD和∠BDE的度數(shù);
(2)寫出圖中的等腰三角形(寫出3個(gè)即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,以BC為半徑作⊙B,交AB于點(diǎn)D,交AB的延長(zhǎng)線于點(diǎn)E,連接CD、CE.
(1)求證:△ACD∽△AEC;
(2)當(dāng) = 時(shí),求tanE;
(3)若AD=4,AC=4 ,求△ACE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖①,已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過(guò)點(diǎn)A,BD⊥直線m, CE⊥直線m,垂足分別為點(diǎn)D、E.證明:DE=BD+CE.
(2)如圖②,將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點(diǎn)都在直線m上,并且有∠BDA=∠AEC=∠BAC=α,其中α為任意鈍角.請(qǐng)問(wèn)結(jié)論DE=BD+CE是否成立?如成立,請(qǐng)你給出證明;若不成立,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠B=40°,∠C=80°,AD是BC邊上的高,AE平分∠BAC.
(1)求∠BAE的度數(shù);(2)求∠DAE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,∠BAD=∠C=90°,AB=AD=9,AE⊥BC于E,AE=8,則CD的長(zhǎng)為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com