【題目】如圖,將矩形沿折疊后點與重合.若原矩形的長寬之比為,則的值為( )
A.B.C.D.
【答案】D
【解析】
根據(jù)折疊的性質(zhì)得到ED′=BE,∠D′EF=∠BEF,根據(jù)平行線的性質(zhì)得到∠D′EF=∠EFB,求得BE=BF,設(shè)AD′=BC′=3x,AB=x,根據(jù)勾股定理得到BE=x,于是得到結(jié)論.
如圖,將矩形ABCD沿EF折疊后點D與B重合,
∴ED′=BE,∠D′EF=∠BEF,
∵AD′∥BC′,
∴∠D′EF=∠EFB,
∴∠BEF=∠EFB,
∴BE=BF,
∵原矩形的長寬之比為3:1,
∴設(shè)AD′=BC′=3x,AB=x,
∴AE=3xED′=3xBE,
∵AE2+AB2=BE2,
∴(3xBE)2+x2=BE2,
解得:BE=x,
∴BF=BE=x,AE=3xBE=x
∴==,
故選:D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C是⊙O上一點,過點C的直線交AB的延長線于點D,AE⊥DC,垂足為E,F是AE與⊙O的交點,AC平分∠BAE,連接OC.
(1)求證:DE是⊙O的切線;
(2)若⊙O半徑為4,∠D=30°,求圖中陰影部分的面積(結(jié)果用含π和根號的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,三角形ABO中,A(﹣2,﹣3)、B(2,﹣1),三角形A′B′O′是三角形ABO平移之后得到的圖形,并且O的對應(yīng)點O′的坐標(biāo)為(4,3).
(1)求三角形ABO的面積;
(2)作出三角形ABO平移之后的圖形三角形A′B′O′,并寫出A′、B′兩點的坐標(biāo)分別為A′ 、B′ ;
(3)P(x,y)為三角形ABO中任意一點,則平移后對應(yīng)點P′的坐標(biāo)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線,點在上,點、點在上,的角平分線交于點,過點作于點,己知,則的度數(shù)為( )
A. 26°B. 32°C. 36°D. 42°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人分別騎自行車和摩托車,從同一地點沿相同的路線前往距離80km的某地,圖中l1,l2分別表示甲、乙兩人離開出發(fā)地的距離s(km)與行駛時間t(h)之間的函數(shù)關(guān)系.請根據(jù)圖象解答下列問題:
(1)甲、乙兩人誰到達(dá)目的地較早?早多長時間?
(2)分別求甲、乙兩人行駛過程中s與t的函數(shù)關(guān)系式;
(3)試確定當(dāng)兩輛車都在行駛途中(不包括出發(fā)地和目的地)時,t的取值范圍;并在這一時間段內(nèi),求t為何值時,摩托車行駛在自行車前面?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形網(wǎng)格中,、、均為格點(格點是指每個小正方形的頂點),將向下平移6個單位得到.利用網(wǎng)格點和直尺畫圖:
(1)在網(wǎng)格中畫出;
(2)畫出邊上的中線,邊上的高線;
(3)若的邊、分別與的邊、垂直,則的度數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一動點從原點O出發(fā),按向上、向右、向下、向右的方向依次不斷地移動,每次移動一個單位,得到點A1(0,1)、A2(1,1)、A3(1,0)、A4(2,0),…,那么點A2019的坐標(biāo)為( 。
A. (1008,1)B. (1009,1)C. (1009,0)D. (1010,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠B=50°,∠C=110°,∠D=90°,AE⊥BC,AF是∠BAD的平分線,與邊BC交于點F.求∠EAF的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com