【題目】一組正方形按如圖所示的方式放置,其中頂點B1y軸上,頂點C1,E1,E2,C2,E3,E4,C3……x軸上,已知正方形A1B1C1D1的邊長為1B1C1O60°,B1C1B2C2B3C3……,則正方形A2020B2020C2020D2020的邊長是(

A.()2017B.()2018C.()2019D.()2020

【答案】C

【解析】

利用正方形的性質(zhì)結(jié)合銳角三角形函數(shù)關(guān)系得出正方形的邊長,進而得出變化規(guī)律即可得出答案.

∵正方形A1B1C1D1的邊長為1,∠∠B1C1O=60°,B1C1B2C2B3C3,

D1E1=B2E2,D2E3=B3E4,∠D1C1E1=C2B2E2=C3B3E4=30°,

D1E1=C1D1sin30°=

B2C2==,

同理可得:B3C3=,

故正方形AnBnCnDn的邊長是:,

則正方形A2020B2020C2020D2020的邊長是:,

故選C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形的邊長為4,延長使,以為邊在上方作正方形,延長,連接,的中點,連接分別與、交于點.則下列結(jié)論:①;②;③;④.其中正確的結(jié)論有( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖1,點上,請在圖中用直尺(不含刻度)和圓規(guī)作等邊三角形,使得點、都在上.

2)已知矩形中,

①如圖2,當(dāng)時,請在圖中用直尺(不含刻度)和圓規(guī)作等邊三角形,使得點在邊上,點在邊上;

②若在該矩形中總能作出符合①中要求的等邊三角形,請直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知梯形ABCD中,ADBC,ABBC,ADBCABBC1,E是邊AB上一點,聯(lián)結(jié)CE

1)如果CECD,求證:ADAE

2)聯(lián)結(jié)DE,如果存在點E,使得△ADE、△BCE和△CDE兩兩相似,求AD的長;

3)設(shè)點E關(guān)于直線CD的對稱點為M,點D關(guān)于直線CE的對稱點為N,如果AD,且M在直線AD上時,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC為直徑作⊙O交AB于點D.

(1)求線段AD的長度;

(2)點E是線段AC上的一點,試問:當(dāng)點E在什么位置時,直線ED與⊙O相切?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某中學(xué)學(xué)生課余生活情況,對喜愛看課外書、體育活動、看電視、社會實踐四個方面的人數(shù)進行調(diào)查統(tǒng)計.現(xiàn)從該校隨機抽取名學(xué)生作為樣本,采用問卷調(diào)查的方法收集數(shù)據(jù)(參與問卷調(diào)查的每名學(xué)生只能選擇其中一項).并根據(jù)調(diào)查得到的數(shù)據(jù)繪制成了如圖所示的兩幅不完整的統(tǒng)計圖.由圖中提供的信息,解答下列問題:

(1)求n的值;

(2)若該校學(xué)生共有1200人,試估計該校喜愛看電視的學(xué)生人數(shù);

(3)若調(diào)查到喜愛體育活動的4名學(xué)生中有3名男生和1名女生,現(xiàn)從這4名學(xué)生中任意抽取2名學(xué)生,求恰好抽到2名男生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我為祖國點贊征文活動中,學(xué)校計劃對獲得一、二等獎的學(xué)生分別獎勵一支鋼筆,一本筆記本.已知購買2支鋼筆和3個筆記本共38元,購買4支鋼筆和5個筆記本共70.

1)鋼筆、筆記本的單價分別為多少元?

2)經(jīng)與商家協(xié)商,購買鋼筆超過30支時,每增加一支,單價降低0.1元;超過50支,均按購買50支的單價銷售.筆記本一律按原價銷售.學(xué)校計劃獎勵一、二等獎學(xué)生共計100人,其中一等獎的人數(shù)不少于30人,且不超過60人,這次獎勵一等學(xué)生多少人時,購買獎品金額最少,最少為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=10BC=mEBC邊上一點,沿AE翻折△ABE,點B落在點F處.

1)連接CF,若CF//AE,求EC的長(用含m的代數(shù)式表示);

2)若EC=,當(dāng)點F落在矩形ABCD的邊上時,求m的值;

3)連接DF,在BC邊上是否存在兩個不同位置的點E,使得?若存在,直接寫出m的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,從甲樓頂部A處測得乙樓頂部D處的俯角α30°,又從A處測得乙樓底部C處的俯角β60°.已知兩樓之間的距離BC18米,則乙樓CD的高度為__________(結(jié)果保留根號)

查看答案和解析>>

同步練習(xí)冊答案