【題目】某中學八年級的籃球隊有10名隊員在“二分球”罰籃投球訓練中,這10名員各投籃50次的進球情況如下表:

進球數(shù)

42

32

26

20

19

18

人數(shù)

1

1

2

1

2

3

針對這次訓練,請解答下列問題:

求這10名隊員進球數(shù)的平均數(shù)、中位數(shù);

求這支球隊投籃命中率______;

若隊員小亮“二分球”的投籃命中率為,請你分析一下小亮在這支球隊中的投籃水平.

投籃命中率進球數(shù)投籃次數(shù)

【答案】(1)平均數(shù)為23.8;中位數(shù)是19.5;(2)這支球隊投籃命中率是47.6%;(3)小亮在這支球隊中的投籃水平處于中上水平.

【解析】

(1)進球數(shù)的平均數(shù)=進球總數(shù)÷人數(shù),10個數(shù)據(jù)中位數(shù)應是第5個和第6個數(shù)的平均數(shù);(2)根據(jù)投籃命中率=進球總數(shù)÷投球總數(shù)×100%解答即可;(3)根據(jù)投籃命中率和中位數(shù)進行解答即可.

(1)平均數(shù)為:=23.8;

把這些數(shù)從小到大排列,則中位數(shù)是:=19.5;

(2)這支球隊投籃命中率是:×100%=47.6%;

(3)若隊員小亮投籃命中率為55%,小亮在這支球隊中的投籃水平處于中上水平.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,把矩形紙片ABCD沿EF折疊,使點B落在邊AD上的點B′處,點A落在點A′處;

(1)求證:B′E=BF;
(2)設AE=a,AB=b,BF=c,試猜想a,b,c之間的一種關系,并給予證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】填表:

相反數(shù)等于它本身

絕對值等于它本身

倒數(shù)等于它本身

平方等于它本身

立方等于它本身

平方根等于它本身

算術平方根等于它本身

立方根等于它本身

最大的負整數(shù)

絕對值最小的數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學初三年級的同學參加了一項節(jié)能的社會調查活動,為了了解家庭用電的情況,他們隨即調查了某地50個家庭一年中生活用電的電費支出情況,并繪制了如下不完整的頻數(shù)分布表和頻數(shù)分布直方圖(費用取整數(shù),單位:元).

分組/元

頻數(shù)

頻率

1000<x<1200

3

0.060

1200<x<1400

12

0.240

1400<x<1600

18

0.360

1600<x<1800

a

0.200

1800<x<2000

5

b

2000<x<2200

2

0.040

合計

50

1.000


請你根據(jù)以上提供的信息,解答下列問題:
(1)補全頻數(shù)分布表a= , b= , 和頻數(shù)分布直方圖;
(2)這50個家庭電費支出的中位數(shù)落在哪個組內?
(3)若該地區(qū)有3萬個家庭,請你估計該地區(qū)有多少個一年電費支出低于1400元的家庭?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,方格紙上的每個小方格都是邊長為1的正方形,我們把以格點間連線為邊的三角形稱為“格點三角形”,圖中的△ABC就是格點三角形.在建立平面直角坐標系后,點B的坐標為(﹣2,﹣1).

(1)把△ABC向左平移4格后得到△A1B1C1,畫出△A1B 1C1并寫出點A1的坐標;

(2)把△ABC繞點C按順時針旋轉90°后得到△A2B2C,畫出△A2B2C的圖形并寫出點A2的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一件工程甲獨做50天可完,乙獨做75天可完,現(xiàn)在兩個人合作,但是中途乙因事離開幾天,從開工后40天把這件工程做完,則乙中途離開了( 。┨欤

A. 10 B. 20 C. 30 D. 25

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在正方形ABCD中,AC為對角線,點EAC上一點,連接EB,ED.

(1)求證:△BEC≌△DEC;

(2)延長BEAD于點F,當∠BED120°時,求∠EFD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點BE分別在直線ACDF上,若∠AGB=∠EHF,∠C=∠D,可以證明

A=∠F.請完成下面證明過程中的各項“填空”

證明:∵∠AGB=∠EHF(已知)

AGB   (對頂角相等)

∴∠EHF=∠DGF(等量代換)

   EC(理由:   

∴∠   =∠DBA(兩直線平行,同位角相等)

又∵∠C=∠D,∴∠DBA   (等量代換)

DF   (內錯角相等,兩直線平行)

∴∠A=∠F(理由:   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,BAC=90°,AB=4,AC=6,點D、E分別是BCAD的中點,AFBCCE的延長線于F.則四邊形AFBD的面積為______

查看答案和解析>>

同步練習冊答案