精英家教網 > 初中數學 > 題目詳情
拋物線經過A、B、C三點,頂點為D,且與x軸的另一個交點為E.
(1)求該拋物線的解析式;
(2)求D和E的坐標,并求四邊形ABDE的面積.
(1)由圖象得:
A點坐標為(-1,0),B點坐標為(0,3),C點坐標為(2,3),
代入y=ax2+bx+c得:
0=a-b+c
c=3
3=4a+2b+c

解得:
a=-1
b=2
c=3
,
∴函數解析式為y=-x2+2x+3;

(2)∵函數解析式為y=-x2+2x+3,
∴y=-x2+2x+3,
=-(x2-2x)+3,
=-[(x2-2x+1)-1]+3,
=-(x-1)2+4,
所以頂點坐標為:D(1,4);
∵函數解析式為y=-x2+2x+3,與x軸的另一個交點為E,
頂點坐標為:D(1,4),可得出對稱軸為x=1,A點坐標為(-1,0),
利用二次函數的對稱性,可得出E點的坐標為(3,0),
連接AB,BD,DE,OD,做DM⊥OB,DN⊥OE,
四邊形ABDE的面積:
s=△AOB+△BOD+△DOE,
=
1
2
AO×OB+
1
2
OB×MD+
1
2
OE×DN,
=
1
2
×1×3+
1
2
×3×1+
1
2
×3×4,
=9.
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

已知拋物線y=-
2
3
x2+bx+c
與x軸交于不同的兩點A(x1,0)和B(x2,0),與y軸交于點C,且x1,x2是方程x2-2x-3=0的兩個根(x1<x2).
(1)求拋物線的解析式;
(2)過點A作ADCB交拋物線于點D,求四邊形ACBD的面積;
(3)如果P是線段AC上的一個動點(不與點A、C重合),過點P作平行于x軸的直線l交BC于點Q,那么在x軸上是否存在點R,使得△PQR為等腰直角三角形?若存在,求出點R的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中有一矩形ABCO(O為原點),點A、C分別在x軸、y軸上,且C點坐標為(0,6),將△BCD沿BD折疊(D點在OC上),使C點落在OA邊的E點上,并將△BAE沿BE折疊,恰好使點A落在BD邊的F點上.
(1)求BC的長,并求折痕BD所在直線的函數解析式;
(2)過點F作FG⊥x軸,垂足為G,F(xiàn)G的中點為H,若拋物線y=ax2+bx+c經過B、H、D三點,求拋物線解析式;
(3)點P是矩形內部的點,且點P在(2)中的拋物線上運動(不含B、D點),過點P作PN⊥BC,分別交BC和BD于點N、M,是否存在這樣的點P,使S△BNM=S△BPM?如果存在,求出點P的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知△ABC是邊長為4的等邊三角形,BC在x軸上,點D為BC的中點,點A在第一象限內,AB與y軸的正半軸相交于點E,點B(-1,0),P是AC上的一個動點(P與點A、C不重合)
(1)求點A、E的坐標;
(2)若y=-
6
3
7
x2+bx+c過點A、E,求拋物線的解析式;
(3)連接PB、PD,設L為△PBD的周長,當L取最小值時,求點P的坐標及L的最小值,并判斷此時點P是否在(2)中所求的拋物線上,請充分說明你的判斷理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知拋物線y=2x2+bx-2經過點A(1,0).
(1)求b的值;
(2)設P為此拋物線的頂點,B(a,0)(a≠1)為拋物線上的一點,Q是坐標平面內的點,若以A、B、P、Q為頂點的四邊形為平行四邊形,這樣的Q點有幾個,并求出PQ的長.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知:拋物線y=x2+(b-1)x+c經過點P(-1,-2b).
(1)求b+c的值;
(2)若b=3,求這條拋物線的頂點坐標;
(3)若b>3,過點P作直線PA⊥y軸,交y軸于點A,交拋物線于另一點B,且BP=2PA,求這條拋物線所對應的二次函數關系式.(提示:請畫示意圖思考)

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,拋物線y=ax2-5ax+4經過△ABC的三個頂點,已知BCx軸,點A在x軸上,點C在y軸上,且AC=BC.
(1)求拋物線的對稱軸;
(2)寫出A,B,C三點的坐標并求拋物線的解析式;
(3)探究:若點P是拋物線對稱軸上且在x軸下方的動點,是否存在△PAB是等腰三角形?若存在,求出所有符合條件的點P坐標;不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,直線y=kx+2與x軸交于點A,與y軸交于點B,與拋物線y=ax2+bx交于點C、D.已知點C的坐標為(2,1),點D的橫坐標為
1
2

(1)求點D的坐標;
(2)求拋物線的函數表達式;
(3)拋物線在x軸上方部分是否存在一點P,使△POA的面積比△POB的面積大4?如果存在,求出點P的坐標;如果不存在,說明理由.
(4)將題中的拋物線y=ax2+bx沿x軸平移,當拋物線經過點B時,請直接寫出平移的方向和距離.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,點C是半圓O的半徑OB上的動點,作PC⊥AB于C.點D是半圓上位于PC左側的點,連接BD交線段PC于E,且PD=PE.
(1)求證:PD是⊙O的切線;
(2)若⊙O的半徑為4
3
,PC=8
3
,設OC=x,PD2=y.
①求y關于x的函數關系式;
②當x=
3
時,求tanB的值.

查看答案和解析>>

同步練習冊答案