(2010•來(lái)賓)已知反比例函數(shù)的圖象過(guò)點(diǎn)(-2,-2).
(1)求此反比例函數(shù)的關(guān)系式;
(2)過(guò)點(diǎn)M(4,4)分別作x、y軸的垂線,垂足分別為A、B,這兩條垂線與x、y軸圍成一個(gè)正方形OAMB(如圖),用列表法寫(xiě)出在這個(gè)正方形內(nèi)(包括正方形的邊和內(nèi)部)且位于第一象限,橫、縱坐標(biāo)都是整數(shù)的點(diǎn)的坐標(biāo);并求在這些點(diǎn)中任取一點(diǎn),該點(diǎn)恰好在所求反比例函數(shù)圖象上的概率P.
分析:(1)設(shè)出反比例函數(shù)的解析式,把點(diǎn)(-2,-2)代入解析式即可求出k的值,進(jìn)而得出反比例函數(shù)的解析式;
(2)用列表法寫(xiě)出在這個(gè)正方形內(nèi)(包括正方形的邊和內(nèi)部)且位于第一象限,橫、縱坐標(biāo)都是整數(shù)的點(diǎn)的坐標(biāo),根據(jù)反比例函數(shù)中k=xy的特點(diǎn)即可求出這些點(diǎn)中在反比例函數(shù)圖象上的點(diǎn),求出其概率即可.
解答:解:(1)設(shè)反比例函數(shù)的解析式為y=
k
x
(k≠0),
∵反比例函數(shù)的圖象過(guò)點(diǎn)(-2,-2).
∴-2=
k
-2
,解得k=4,
∴反比例函數(shù)的解析式為:y=
4
x


(2)正方形內(nèi)(包括正方形的邊和內(nèi)部)且位于第一象限,橫、縱坐標(biāo)都是整數(shù)的點(diǎn)的坐標(biāo)如表所示:
縱坐標(biāo)
橫坐標(biāo)
0 1 2 3 4
0 (0,0) (0,1) (0,2) (0,3) (0,4)
1 (1,0) (1,1) (1,2) (1,3) (1,4)
2 (2,0) (2,1) (2,2) (2,3) (2,4)
3 (3,0) (3,1) (3,2) (3,3) (3,4)
4 (4,0) (4,1) (4,2) (4,3) (4,4)
∵1×4=4,2×2=4,4×1=4,
∴點(diǎn)(1,4)、(2,2)、(4,1)在反比例函數(shù)y=
4
x
的圖象上,其概率P=
3
25
點(diǎn)評(píng):本題考查的是反比例函數(shù)綜合題,涉及到用待定系數(shù)法求反比例函數(shù)的解析式及概率公式,難度適中.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2010•來(lái)賓)已知|x|=2,則x=
±2
±2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2010•來(lái)賓)已知⊙O1與⊙O2相切,⊙O1的半徑為4,圓心距為10,則⊙O2的半徑是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2010•來(lái)賓)已知在Rt△ABC中,∠C=90°,點(diǎn)E在邊AB上,且AE=AC,∠BAC的平分線AD與BC交于點(diǎn)D.
(1)根據(jù)上述條件,用尺規(guī)在圖中作出點(diǎn)E和∠BAC的平分線AD(不要求寫(xiě)出作法,但要保留作圖痕跡);
(2)證明:DE⊥AB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2010•來(lái)賓)已知矩形OABC的頂點(diǎn)O在平面直角坐標(biāo)系的原點(diǎn),邊OA、OC分別在x、y軸的正半軸上,且OA=3cm,OC=4cm,點(diǎn)M從點(diǎn)A出發(fā)沿AB向終點(diǎn)B運(yùn)動(dòng),點(diǎn)N從點(diǎn)C出發(fā)沿CA向終點(diǎn)A運(yùn)動(dòng),點(diǎn)M、N同時(shí)出發(fā),且運(yùn)動(dòng)的速度均為1cm/秒,當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)即停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為t秒.
(1)試用t表示點(diǎn)N的坐標(biāo),并指出t的取值范圍;
(2)試求出多邊形OAMN的面積S與t的函數(shù)關(guān)系式;
(3)是否存在某個(gè)時(shí)刻t,使得點(diǎn)O、N、M三點(diǎn)同在一條直線上?若存在,則求出t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案