一家商店進行裝修,若請甲、乙兩個裝修組同時施工,8天可以完成,需付兩組費用共3520元,若先請甲組單獨做6天,再請乙組單獨做12天可以完成,需付費用3480元,問:
(1)甲、乙兩組工作一天,商店各應付多少錢?
(2)已知甲單獨完成需12天,乙單獨完成需24天,單獨請哪個組,商店所需費用最少?
(3)若裝修完后,商店每天可贏利200元,你認為如何安排施工更有利于商店?請你幫助商店決策。(可用(1)(2)問的條件及結論)
(1)設:甲組工作一天商店應付x元,乙組工作一天商店付y元.
由題意得
解得
答:甲、乙兩組工作一天,商店各應付300元和140元.
(2)單獨請甲組需要的費用:300×12=3600元.
單獨請乙組需要的費用:24×140=3360元.
答:單獨請乙組需要的費用少.
(3)請兩組同時裝修,理由:
甲單獨做,需費用3600元,少贏利200×12=2400元,相當于損失6000元;
乙單獨做,需費用3360元,少贏利200×24=4800元,相當于損失8160元;
甲乙合作,需費用3520元,少贏利200×8=1600元,相當于損失5120元;
可見,甲乙合作損失費用最少.
答:甲乙合作施工更有利于商店.
【解析】(1)本題的等量關系是:甲做8天需要的費用+乙作8天需要的費用=3520元.甲組6天需付的費用+乙做12天需付的費用=3480元,由此可得出方程組求出解.
(2)根據(jù)(1)得出的甲乙每工作一天,商店需付的費用,然后分別計算出甲單獨做12天需要的費用,乙單獨做24天需要的費用,讓兩者進行比較即可.
(3)本題可將每種施工方法的施工費加上施工期間商店損失的費用,然后將不同方案計算出的結果進行比較,損失最少的方案就是最有利商店的方案
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com