【題目】如圖,拋物線y=x2+bx﹣2與x軸交于A、B兩點,與y軸交于C點,且A(一1,0).
(1)求拋物線的解析式及頂點D的坐標(biāo);
(2)判斷△ABC的形狀,證明你的結(jié)論;
(3)點M是拋物線對稱軸上的一個動點,當(dāng)△ACM周長最小時,求點M的坐標(biāo)及△ACM的最小周長.
【答案】(1)拋物線的解析式為y=x2﹣x﹣2.頂點D的坐標(biāo)為:(,﹣);(2)△ABC是直角三角形.(3)3.
【解析】
試題分析:(1)直接將(﹣1,0),代入解析式進(jìn)而得出答案,再利用配方法求出函數(shù)頂點坐標(biāo);
(2)分別得出AB2=25,AC2=OA2+OC2=5,BC2=OC2+OB2=20,進(jìn)而利用勾股定理的逆定理得出即可;
(3)利用軸對稱最短路線求法得出M點位置,再求△ACM周長最小值.
解:(1)∵點A(﹣1,0)在拋物線y=x2+bx﹣2上,
∴×(﹣1 )2+b×(﹣1)﹣2=0,
解得:b=﹣,
∴拋物線的解析式為y=x2﹣x﹣2.
y=(x﹣)2﹣,
∴頂點D的坐標(biāo)為:(,﹣);
(2)當(dāng)x=0時y=﹣2,∴C(0,﹣2),OC=2.
當(dāng)y=0時,x2﹣x﹣2=0,
解得:x1=﹣1,x2=4,
∴B (4,0),
∴OA=1,OB=4,AB=5.
∵AB2=25,AC2=OA2+OC2=5,BC2=OC2+OB2=20,
∴AC2+BC2=AB2.
∴△ABC是直角三角形.
(3)如圖所示:連接AM,
點A關(guān)于對稱軸的對稱點B,BC交對稱軸于點M,根據(jù)軸對稱性及兩點之間線段最短可知,
MC+MA的值最小,即△ACM周長最小,
設(shè)直線BC解析式為:y=kx+d,則,
解得:,
故直線BC的解析式為:y=x﹣2,
當(dāng)x=時,y=﹣,
∴M(,﹣),
△ACM最小周長是:AC+AM+MC=AC+BC=+2=3.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人進(jìn)行射擊測試,每人10次射擊成績的平均數(shù)都是8.8環(huán),方差分別是:S甲2=1,S乙2=0.8,則射擊成績較穩(wěn)定的是 . (填“甲”或“乙”)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若(x2+x+b)(2x+c)=2x3+7x2﹣x+a,則a,b,c的值分別為( )
A.a=﹣15,b=﹣3,c=5B.a=﹣15,b=3,c=﹣5
C.a=15,b=3,c=5D.a=15,b=﹣3,c=﹣5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,C為以AB為直徑的⊙O上一點,AD和過點C的切線互相垂直,垂足為點D.
(1)求證:AC平分∠BAD;
(2)若CD=3,AC=3,求⊙O的半徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,分別以點A和點B為圓心,大于AB長為半徑畫弧,兩弧相交于點M、N,連接MN,交BC于點D,交AB于點E,連接AD.若△ABC的周長等于16,△ADC的周長為9,那么線段AE的長等于( 。
A. 3 B. 3.5 C. 5 D. 7
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AC平分∠BAD,延長DC交AB的延長線于點E .
(1)若∠ADC=86°,求∠CBE的度數(shù);
(2)若AC=EC,求證:AD=BE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABE是等腰三角形,AB=AE,∠BAE=45°,過點B作BC⊥AE于點C,在BC上截取CD=CE,連接AD、DE并延長AD交BE于點P;
(1)求證:AD=BE;
(2)試說明AD平分∠BAE;
(3)如圖2,將△CDE繞著點C旋轉(zhuǎn)一定的角度,那么AD與BE的位置關(guān)系是否發(fā)生變化,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com