等邊△ABC的邊長為a,求其內(nèi)切圓的內(nèi)接正方形DEFG的面積.
【答案】分析:根據(jù)等邊三角形的性質(zhì)求得其等邊三角形的邊心距,即是正方形的半徑,再根據(jù)正方形的性質(zhì)求得正方形的邊長,進(jìn)一步求出其面積.
解答:解:等邊△ABC的邊長為a,
∵點(diǎn)O為△ABC的內(nèi)心,
∴OE⊥AB,AE=BE=,∠EAO=30°,
∴OE=AE•tan∠EAO=a,
則正方形的邊長是OE•cos45°=OE=a.
則正方形的面積是:a2
點(diǎn)評:此類計(jì)算題主要是構(gòu)造一個(gè)由正多邊形的邊心距、半徑和半邊組成的直角三角形.該直角三角形的半邊所對的角即是正多邊形的中心角的一半,即.根據(jù)銳角三角函數(shù)的概念進(jìn)行求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,等邊△ABC的邊長為2,E是邊BC上的動(dòng)點(diǎn),EF∥AC交線段AB于點(diǎn)F,在線段AC上取一點(diǎn)P,使PE=EB,連接FP.
(1)請直接寫出圖中與線段EF相等的所有線段.(不再另外添加輔助線)
(2)點(diǎn)E滿足什么條件時(shí),四邊形EFPC是菱形,并說明理由.
(3)在(2)的條件下,以點(diǎn)E為圓心,r為半徑作圓,根據(jù)E與此時(shí)平行四邊形EFPC四條邊交點(diǎn)的總個(gè)數(shù),求相應(yīng)的r的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,等邊△ABC的邊長為數(shù)學(xué)公式,以BC邊所在直線為x軸,BC邊上的高線AO所在的直線為y軸建立平面直角坐標(biāo)系.
(1)求過A、B、C三點(diǎn)的拋物線的解析式.
(2)如圖,設(shè)⊙P是△ABC的內(nèi)切圓,分別切AB、AC于E、F點(diǎn),求陰影部分的面積.
(3)點(diǎn)D為y軸上一動(dòng)點(diǎn),當(dāng)以D點(diǎn)為圓心,3為半徑的⊙D與直線AB、AC都相切時(shí),試判斷⊙D與(2)中⊙P的位置關(guān)系,并簡要說明理由.
(4)若(2)中⊙P的大小不變,圓心P設(shè)y軸運(yùn)動(dòng),設(shè)P點(diǎn)坐標(biāo)為(0,a),則⊙P與直線AB、AC有幾種位置關(guān)系?并寫出相應(yīng)位置關(guān)系時(shí)a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2001年山東省濟(jì)南市中考數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,等邊△ABC的邊長為,以BC邊所在直線為x軸,BC邊上的高線AO所在的直線為y軸建立平面直角坐標(biāo)系.
(1)求過A、B、C三點(diǎn)的拋物線的解析式.
(2)如圖,設(shè)⊙P是△ABC的內(nèi)切圓,分別切AB、AC于E、F點(diǎn),求陰影部分的面積.
(3)點(diǎn)D為y軸上一動(dòng)點(diǎn),當(dāng)以D點(diǎn)為圓心,3為半徑的⊙D與直線AB、AC都相切時(shí),試判斷⊙D與(2)中⊙P的位置關(guān)系,并簡要說明理由.
(4)若(2)中⊙P的大小不變,圓心P設(shè)y軸運(yùn)動(dòng),設(shè)P點(diǎn)坐標(biāo)為(0,a),則⊙P與直線AB、AC有幾種位置關(guān)系?并寫出相應(yīng)位置關(guān)系時(shí)a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年江蘇省無錫市蠡園中學(xué)中考適應(yīng)性練習(xí)數(shù)學(xué)試卷(十六)(解析版) 題型:解答題

如圖,等邊△ABC的邊長為2,E是邊BC上的動(dòng)點(diǎn),EF∥AC交線段AB于點(diǎn)F,在線段AC上取一點(diǎn)P,使PE=EB,連接FP.
(1)請直接寫出圖中與線段EF相等的所有線段.(不再另外添加輔助線)
(2)點(diǎn)E滿足什么條件時(shí),四邊形EFPC是菱形,并說明理由.
(3)在(2)的條件下,以點(diǎn)E為圓心,r為半徑作圓,根據(jù)E與此時(shí)平行四邊形EFPC四條邊交點(diǎn)的總個(gè)數(shù),求相應(yīng)的r的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:期末題 題型:單選題

如圖,已知等邊△ABC的邊長為2,DE是它的中位線,則下面四個(gè)結(jié)論:
①DE=1,②△CDE∽△CAB,③△CDE的面積與△CAB的面積之比為1:4。
其中正確的有
[     ]
A.0 個(gè)    
B.1 個(gè)    
C.2 個(gè)    
D.3 個(gè)

查看答案和解析>>

同步練習(xí)冊答案