【題目】在平面直角坐標系xOy中,我們把橫、縱坐標都是整數(shù)的點叫做整點.已知點A0,4),點Bx軸正半軸上的點,記△AOB內部(不包括邊界)的整點個數(shù)為m.當m=6時,點B的橫坐標a的取值范圍是______

【答案】4a

【解析】

直接利用已知畫出符合題意的三角形找出臨界點,進而可得出答案.

解:如圖,當△AOB內部(不包括邊界)的整點個數(shù)為6時,

①當點BB1處時,即B14,0),此時有三個整點處在直線AB1上,所以a4;

②當點BB2處時,直線AB2經過點(4,1),此時△AB2O內正好有6個整點,設此時直線AB2的解析式為y=kx+b,將點A0,4),C(4,1)代入得,

,解得,即直線AB2的解析式為y=x+4,

y=0時,x+4=0,解得x=,

∴點B的橫坐標a的取值范圍是:4a

故答案為:4a

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P是正方形ABCD內一點,點P到點ABD的距離分別為1,2.△ADP沿點A旋轉至ABP,連接PP,并延長APBC相交于點Q.

(1)求證:APP是等腰直角三角形;

(2)BPQ的大。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,游客在點A處坐纜車出發(fā),沿ABD的路線可至山頂D處.已知ABBD800米,∠α75°,∠β45°,求山高DE(結果精確到1米).(參考數(shù)據(jù):sin75°=0.966,cos75°=0.259,tan75°=3.732,1.414

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,AC是⊙O的切線,切點為A,BC交⊙O于點D,點EAC的中點.

1)試判斷直線DE與⊙O的位置關系,并說明理由;

2)若⊙O的半徑為3,∠ACB=40°,AC=7.2,求圖中陰影部分的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y=﹣2x2+bx+c經過點A(﹣1,﹣3)和點B23

1)求這條拋物線所對應的函數(shù)表達式.

2)點Mx1,y1)、Nx2,y2)在這拋物線上,當1x2x1時,比較y1y2的大。

3)點Mx1y1)、Nx2,y2)在這拋物線上,若tx1t+1,當x23時,均有y1y2,直接寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,半圓O的直徑AB5cm,點MAB上且AM1cm,點P是半圓O上的動點,過點BBQPMPM(或PM的延長線)于點Q.設PMxcm,BQycm.(當點P與點A或點B重合時,y的值為0)小石根據(jù)學習函數(shù)的經驗,對函數(shù)y隨自變量x的變化而變化的規(guī)律進行了探究.下面是小石的探究過程,請補充完整:

1)通過取點、畫圖、測量,得到了xy的幾組值,如下表:

x/cm

1

1.5

2

2.5

3

3.5

4

y/cm

0

3.7

______

3.8

3.3

2.5

______

2)建立平面直角坐標系,描出以補全后的表中各對對應值為坐標的點,畫出該函數(shù)的圖象;

3)結合畫出的函數(shù)圖象,解決問題:當BQ與直徑AB所夾的銳角為60°時,PM的長度約為______cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明想利用太陽光測量樓高,他帶著皮尺來到一棟樓下,發(fā)現(xiàn)對面墻上有這棟樓的影子,針對這種情況,他設計了一種測量方案,具體測量情況如下:如示意圖,小明邊移動邊觀察,發(fā)現(xiàn)站到點E處時,可以使自己落在墻上的影子與這棟樓落在墻上的影子重疊,且高度恰好相同.此時,測得小明落在墻上的影子高度CD=1.2m,CE=0.8m,CA=30m(點A、E、C在同一直線上).已知小明的身高EF是1.7m,請你幫小明求出樓高AB(結果精確到0.1m).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】附加題:如圖,直線軸、軸分別交于點、,經過、兩點的拋物線軸的另一個交點為

1)求該拋物線的解析式;

2)若點在直線下方的拋物線上,過點軸交于點,軸交于點,求的最大值;

3)設為直線上的點,以、、為頂點的四邊形能否構成平行四邊形?若能,求出點的坐標;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,斜坡AB10米,按圖中的直角坐標系可用y=x+5表示,點A,B分別在x軸和y軸上.在坡上的A處有噴灌設備,噴出的水柱呈拋物線形落到B處,拋物線可用y=x2+bx+c表示.

1)求拋物線的函數(shù)關系式(不必寫自變量取值范圍);

2)求水柱離坡面AB的最大高度;

3)在斜坡上距離A2米的C處有一顆3.5米高的樹,水柱能否越過這棵樹?

查看答案和解析>>

同步練習冊答案