【題目】如圖,直線y=﹣ x+c與x軸交于點A(3,0),與y軸交于點B,拋物線y=﹣ x2+bx+c經(jīng)過點A,B.
(1)求點B的坐標(biāo)和拋物線的解析式;
(2)M(m,0)為x軸上一動點,過點M且垂直于x軸的直線與直線AB及拋物線分別交于點P,N.
①點M在線段OA上運動,若以B,P,N為頂點的三角形與△APM相似,求點M的坐標(biāo);
②點M在x軸上自由運動,若三個點M,P,N中恰有一點是其它兩點所連線段的中點(三點重合除外),則稱M,P,N三點為“共諧點”.請直接寫出使得M,P,N三點成為“共諧點”的m的值.
【答案】
(1)
解:∵y=﹣ x+c與x軸交于點A(3,0),與y軸交于點B,
∴0=﹣2+c,解得c=2,
∴B(0,2),
∵拋物線y=﹣ x2+bx+c經(jīng)過點A,B,
∴ ,解得 ,
∴拋物線解析式為y=﹣ x2+ x+2
(2)
解:①由(1)可知直線解析式為y=﹣ x+2,
∵M(jìn)(m,0)為x軸上一動點,過點M且垂直于x軸的直線與直線AB及拋物線分別交于點P,N,
∴P(m,﹣ m+2),N(m,﹣ m2+ m+2),
∴PM=﹣ m+2,PA=3﹣m,PN=﹣ m2+ m+2﹣(﹣ m+2)=﹣ m2+4m,
∵△BPN和△APM相似,且∠BPN=∠APM,
∴∠BNP=∠AMP=90°或∠NBP=∠AMP=90°,
當(dāng)∠BNP=90°時,則有BN⊥MN,
∴BN=OM=m,
∴ = ,即 = ,解得m=0(舍去)或m=2,
∴M(2,0);
當(dāng)∠NBP=90°時,則有 = ,
∵A(3,0),B(0,2),P(m,﹣ m+2),
∴BP= = m,AP= = (3﹣m),
∴ = ,解得m=0(舍去)或m= ,
∴M( ,0);
綜上可知當(dāng)以B,P,N為頂點的三角形與△APM相似時,點M的坐標(biāo)為(2,0)或( ,0);
②由①可知M(m,0),P(m,﹣ m+2),N(m,﹣ m2+ m+2),
∵M(jìn),P,N三點為“共諧點”,
∴有P為線段MN的中點、M為線段PN的中點或N為線段PM的中點,
當(dāng)P為線段MN的中點時,則有2(﹣ m+2)=﹣ m2+ m+2,解得m=3(三點重合,舍去)或m= ;
當(dāng)M為線段PN的中點時,則有﹣ m+2+(﹣ m2+ m+2)=0,解得m=3(舍去)或m=﹣1;
當(dāng)N為線段PM的中點時,則有﹣ m+2=2(﹣ m2+ m+2),解得m=3(舍去)或m=﹣ ;
綜上可知當(dāng)M,P,N三點成為“共諧點”時m的值為 或﹣1或﹣
【解析】(1)把A點坐標(biāo)代入直線解析式可求得c,則可求得B點坐標(biāo),由A、B的坐標(biāo),利用待定系數(shù)法可求得拋物線解析式;(2)①由M點坐標(biāo)可表示P、N的坐標(biāo),從而可表示出MA、MP、PN、PB的長,分∠NBP=90°和∠BNP=90°兩種情況,分別利用相似三角形的性質(zhì)可得到關(guān)于m的方程,可求得m的值;②用m可表示出M、P、N的坐標(biāo),由題意可知有P為線段MN的中點、M為線段PN的中點或N為線段PM的中點,可分別得到關(guān)于m的方程,可求得m的值.
【考點精析】關(guān)于本題考查的線段的中點和相似三角形的判定與性質(zhì),需要了解線段的中點到兩端點的距離相等;相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方才能得出正確答案.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠B>∠C,AD⊥BC,垂足為D,AE平分∠BAC.
(1)已知∠B=60°,∠C=30°,求∠DAE的度數(shù);
(2)已知∠B=3∠C,求證:∠DAE=∠C.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線 與x軸的負(fù)半軸交于點A,與y軸交于點B,連結(jié)AB.點C 在拋物線上,直線AC與y軸交于點D.
(1)求c的值及直線AC的函數(shù)表達(dá)式;
(2)點P在x軸的正半軸上,點Q在y軸正半軸上,連結(jié)PQ與直線AC交于點M,連結(jié)MO并延長交AB于點N,若M為PQ的中點.
①求證:△APM∽△AON;
②設(shè)點M的橫坐標(biāo)為m , 求AN的長(用含m的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,已知拋物線y=ax2+bx﹣5與x軸交于A(﹣1,0),B(5,0)兩點,與y軸交于點C.
(1)求拋物線的函數(shù)表達(dá)式;
(2)若點D是y軸上的一點,且以B,C,D為頂點的三角形與△ABC相似,求點D的坐標(biāo);
(3)如圖2,CE∥x軸與拋物線相交于點E,點H是直線CE下方拋物線上的動點,過點H且與y軸平行的直線與BC,CE分別交于點F,G,試探究當(dāng)點H運動到何處時,四邊形CHEF的面積最大,求點H的坐標(biāo)及最大面積;
(4)若點K為拋物線的頂點,點M(4,m)是該拋物線上的一點,在x軸,y軸上分別找點P,Q,使四邊形PQKM的周長最小,求出點P,Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,點 D 是邊 BC 上的點(與 B、C 兩點不重合),過點 D作 DE∥AC,DF∥AB,分別交 AB、AC 于 E、F 兩點,下列說法正確的是( )
A. 若 AD 平分∠BAC,則四邊形 AEDF 是菱形
B. 若 BD=CD,則四邊形 AEDF 是菱形
C. 若 AD 垂直平分 BC,則四邊形 AEDF 是矩形
D. 若 AD⊥BC,則四邊形 AEDF 是矩形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列等式:
①3-2=(-1)2;
②5-2=(-)2;
③7-2=(-)2;…
(1)請你根據(jù)以上規(guī)律,寫出第6個等式 .
(2)第n個等式可以表示為 ,并請你證明你得到的等式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在7×7網(wǎng)格中,每個小正方形邊長都為1.建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,使點A(3,4)、C(4,2).
(1)判斷△ABC的形狀,并求圖中格點△ABC的面積;
(2)在x軸上有一點P,使得PA+PC最小,則PA+PC的最小值為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于任意實數(shù) , ,定義關(guān)于“ ”的一種運算如下: .例如: , .
(1)若 ,求 的值;
(2)若 ,求 的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com