【題目】已知y是x的一次函數(shù),下表中給出了x與y的部分對(duì)應(yīng)值,則m的值是

x

﹣1

2

6

y

5

﹣1

m

【答案】-9
【解析】解:一次函數(shù)的解析式為y=kx+b(k≠0),
∵x=﹣1時(shí)y=5;x=2時(shí)y=﹣1,
,
解得 ,
∴一次函數(shù)的解析式為y=﹣2x+3,
∴當(dāng)x=6時(shí),y=﹣2×6+3=﹣9,即m=﹣9.
故答案是:﹣9.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解一次函數(shù)的性質(zhì)(一般地,一次函數(shù)y=kx+b有下列性質(zhì):(1)當(dāng)k>0時(shí),y隨x的增大而增大(2)當(dāng)k<0時(shí),y隨x的增大而減小),還要掌握一次函數(shù)的圖象和性質(zhì)(一次函數(shù)是直線,圖像經(jīng)過(guò)仨象限;正比例函數(shù)更簡(jiǎn)單,經(jīng)過(guò)原點(diǎn)一直線;兩個(gè)系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來(lái)相見(jiàn),k為正來(lái)右上斜,x增減y增減;k為負(fù)來(lái)左下展,變化規(guī)律正相反;k的絕對(duì)值越大,線離橫軸就越遠(yuǎn))的相關(guān)知識(shí)才是答題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)(﹣3,4)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】先化簡(jiǎn),再求值:(3yx2﹣2xy)﹣(4x2y﹣6xy﹣3),其中x=﹣1,y=﹣2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)為了迎接"6.1兒童節(jié)",以調(diào)低價(jià)格的方式促銷n個(gè)不同的玩具,調(diào)整后的單價(jià)y(元)與調(diào)整前的單價(jià)x(元)滿足一次函數(shù)關(guān)系,如下表:

當(dāng)這些玩具調(diào)整后的單價(jià)都大于2元時(shí),解答下列問(wèn)題:

(1) yx的函數(shù)關(guān)系式為 ,x的取值范圍為 ;

(2) 某個(gè)玩具調(diào)整前單價(jià)是108元,顧客購(gòu)買這個(gè)玩具省了 元;

(3) 這n個(gè)玩具調(diào)整前、后的平均單價(jià)分別為 (元)、 (元),猜想的關(guān)系式,并寫(xiě)出推導(dǎo)過(guò)程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算
(1)27﹣19+(﹣7)﹣32;
(2)(﹣7)÷(﹣ )×(﹣ );
(3)( + )×(﹣36)
(4)﹣14 ×[2﹣(﹣3)2].

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是( )

A. 數(shù)據(jù)34,4,7,3的眾數(shù)是4

B. 數(shù)據(jù)0,12,5a的中位數(shù)是2

C. 一組數(shù)據(jù)的眾數(shù)和中位數(shù)不可能相等

D. 數(shù)據(jù)0,5,-7,-57的中位數(shù)和平均數(shù)都是0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2014年1月1日零點(diǎn),北京、上海、重慶、寧夏的氣溫分別是﹣4℃、5℃、6℃、﹣8℃,當(dāng)時(shí)這四個(gè)城市中,氣溫最低的是(
A.北京
B.上海
C.重慶
D.寧夏

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y1=kx+b的圖象與x軸、y軸分別交于點(diǎn)A、B,與一次函數(shù)y2=x的圖象交于點(diǎn)M,點(diǎn)A的坐標(biāo)為(6,0),點(diǎn)M的橫坐標(biāo)為2,過(guò)點(diǎn)P(a,0),作x軸的垂線,分別交函數(shù)y=kx+b和y=x的圖象于點(diǎn)C、D.
(1)求一次函數(shù)y1=kx+b的表達(dá)式;
(2)若點(diǎn)M是線段OD的中點(diǎn),求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知兩圓的半徑分別為23,圓心距為5,則這兩圓的位置關(guān)系是(

A.外離B.外切C.相交D.內(nèi)切

查看答案和解析>>

同步練習(xí)冊(cè)答案