【題目】平面直角坐標系中,Aa,0),B0b),a,b滿足,將線段AB平移得到CD,A,B的對應(yīng)點分別為C,D,其中點Cy軸負半軸上.

1)求AB兩點的坐標;

2)如圖1,連ADBC于點E,若點Ey軸正半軸上,求的值;

3)如圖2,點FG分別在CD,BD的延長線上,連結(jié)FG,BAC的角平分線與DFG的角平分線交于點H,求GH之間的數(shù)量關(guān)系.

【答案】1;(2;(3之間的數(shù)量關(guān)系為

【解析】

1)根據(jù)非負數(shù)的性質(zhì)和解二元一次方程組求解即可;

2)設(shè),先根據(jù)平移的性質(zhì)可得,過D軸于P,再根據(jù)三角形ADP的面積得出,從而可得,然后根據(jù)線段的和差可得,由此即可得出答案;

3)設(shè)AHCD交于點Q,過H,G分別作DF的平行線MNKJ,設(shè),由平行線的性質(zhì)可得,由此即可得出結(jié)論.

1,且

解得:

;

2)設(shè)

將線段AB平移得到CD,

由平移的性質(zhì)得

如圖1,過D軸于P

解得

;

3之間的數(shù)量關(guān)系為,求解過程如下:

如圖2,設(shè)AHCD交于點Q,過HG分別作DF的平行線MN,KJ

∵HD平分,HF平分

設(shè)

∵AB平移得到CD

,

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,矩形AOCB的兩邊OA、OC分別在x軸和y軸上,且OA2,OC1.在第二象限內(nèi),將矩形AOCB以原點O為位似中心放大為原來的倍,得到矩形A1OC1B1,再將矩形A1OC1B1以原點O為位似中心放大倍,得到矩形A2OC2B2,以此類推,得到的矩形A2020OC2020B2020的對角線交點的縱坐標為______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一艘海輪位于燈塔P的北偏東65°方向,距離燈塔80海里的A處,它沿正南方向航行一段時間后,到達位于燈塔P的南偏東45°方向上的B處,則這時海輪所在的B處距離燈塔P的距離是( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小軍同學(xué)在學(xué)校組織的社會調(diào)查活動中負責了解他所居住的小區(qū)450戶居民的生活用水情況,他從中隨機調(diào)查了50戶居民的月均用水量(單位:t),并繪制了樣本的頻數(shù)分布表和頻數(shù)分布直方圖(如圖).

月均用水量(單位:t)

頻數(shù)

百分比

2≤x<3

2

4%

3≤x<4

12

24%

4≤x<5

  

  

5≤x<6

10

20%

6≤x<7

  

12%

7≤x<8

3

6%

8≤x<9

2

4%

(1)請根據(jù)題中已有的信息補全頻數(shù)分布表和頻數(shù)分布直方圖;

(2)如果家庭月均用水量大于或等于4t且小于7t”為中等用水量家庭,請你通過樣本估計總體中的中等用水量家庭大約有多少戶?

(3)從月均用水量在2≤x<3,8≤x<9這兩個范圍內(nèi)的樣本家庭中任意抽取2個,求抽取出的2個家庭來自不同范圍的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解市民對垃圾分類知識的知曉程度,某數(shù)學(xué)學(xué)習興趣小組對市民進行隨機抽樣的問卷調(diào)查,調(diào)查結(jié)果分為.非常了解、.了解、.基本了解.不太了解四個等級進行統(tǒng)計,并將統(tǒng)計結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖(1,2),請根據(jù)圖中的信息解答下列問題.

(1)這次調(diào)查的市民人數(shù)為 ,2, ;

(2)補全圖1中的條形統(tǒng)計圖;

(3)在圖2中的扇形統(tǒng)計圖中,.基本了解所在扇形的圓心角度數(shù);

(4)據(jù)統(tǒng)計,2018年該市約有市民500萬人,那么根據(jù)抽樣調(diào)查的結(jié)果,可估計對垃圾分類知識的知曉程度為.不太了解的市民約有多少萬人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形ABCD中,AB6,連接AC,BD,P是正方形邊上或?qū)蔷上一點,若PD2AP,則AP的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD,AB=6,DAB=60°,AE分別交BC、BD于點E、F,CE=2,連接CF.以下結(jié)論:①∠BAF=BCF; ②點EAB的距離是2; SCDF:SBEF=9:4; tanDCF=3/7. 其中正確的有()

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,正方形ABCD的頂點A、B的坐標分別為(0,2)、(1,0),頂點C在函數(shù)y=x2+bx-1的圖象上,將正方形ABCD沿x軸正方向平移后得到正方形A′B′C′D′,點D的對應(yīng)點D′落在拋物線上,則點D與其對應(yīng)點D′之間的距離為 ______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】424日《復(fù)仇者聯(lián)盟4》在中國大陸上映.我市江北UME影城為加大宣傳,決定在423日預(yù)售普通3D400張和IMAX100張,且預(yù)售中的IMAX的票價是普通3D票價的2倍.

1)若影城的預(yù)售總額不低于21000元,則普通3D票的預(yù)售價格最少為多少元?

2)影城計劃在上映當天推出普通3D3200張,IMAX800張.由于預(yù)售的火爆,影城決定將普通3D票的價格在(1)中最低價格的基礎(chǔ)上增加%,而IMAX票價在(1)中IMAX票價上增加了a元,結(jié)果普通3D票的銷售量比計劃少2a%IMAX票的銷售量與計劃保持一致,最終實際銷售額與計劃銷售額相等,求a的值.

查看答案和解析>>

同步練習冊答案