【題目】定義:如果,那么稱bn的布谷數(shù),記為.

例如:因為,所以,

因為,

所以.

1)根據(jù)布谷數(shù)的定義填空:g2=________________,g32=___________________.

2)布谷數(shù)有如下運算性質:

mn為正整數(shù),則,.

根據(jù)運算性質解答下列各題:

①已知,求的值;

②已知.的值.

【答案】115;(2)①3.807,0.807;②;.

【解析】

1)根據(jù)布谷數(shù)的定義把232化為底數(shù)為2的冪即可得出答案;

2)①根據(jù)布谷數(shù)的運算性質, g14=g2×7=g2+g7),,再代入數(shù)值可得解;

②根據(jù)布谷數(shù)的運算性質, 先將兩式化為,,再代入求解.

解:(1g2=g21=1
g32=g25=5;
故答案為132;

2)①g14=g2×7=g2+g7),
g7=2.807g2=1,
g14=3.807

g4=g22=2,

=g7-g4=2.807-2=0.807
故答案為3.807,0.807;

②∵.

.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一個長方形運動場被分隔成、、、個區(qū), 區(qū)是邊長為的正方形, 區(qū)是邊長為的正方形.

(1)列式表示每個區(qū)長方形場地的周長,并將式子化簡;

(2)列式表示整個長方形運動場的周長,并將式子化簡;

(3)如果, ,求整個長方形運動場的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,已知在△ABC中,AB=AC,BD和CE分別是∠ABC和∠ACB的角平分線,且BD和CE相交于O點.

(1)試說明△OBC是等腰三角形;

(2)連接OA,試判斷直線OA與線段BC的關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)又一個六一國際兒童節(jié)即將到來,學校打算給初一的學生贈送精美文具包,文具店規(guī)定一次購買400個以上,可享受8折優(yōu)惠.若給初一學生每人購買一個,則不能享受優(yōu)惠,需付款1936元;若多買88個,則可享受優(yōu)惠,同樣只需付款1936元,該校初一年級學生共有多少人?

(2)初一(1)班為準備六一聯(lián)歡會,欲購買價格分別為4元、8元和20元的三種獎品,每種獎品至少購買一件,共買16件,恰好用100元.若4元的獎品購買a件,先用含a的代數(shù)式表示另外兩種獎品的件數(shù),然后設計可行的購買方案.

作為初二的大哥哥、大姐姐,你會解決這兩個問題嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形ABCD中,以A為圓心,AB為半徑的圓交ADF,交BCG,延長BA交圓于E.

(1)若ED與⊙A相切,試判斷GD與⊙A的位置關系,并證明你的結論;

(2)在(1)的條件不變的情況下,若GC=CD,求∠C.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一組數(shù)據(jù):x1,x2,x3,x4,x5,x6的平均數(shù)是2,方差是3,則另一組數(shù)據(jù):3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2,3x6﹣2的平均數(shù)和方差分別是( 。

A. 2,3 B. 2,9 C. 4,25 D. 4,27

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過點OOEAB,交BCE.

(1)求證:ED為⊙O的切線;

(2)如果⊙O的半徑為,ED=2,延長EO交⊙OF,連接DF、AF,求ADF的面積.

【答案】(1)證明見解析;(2)

【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線與等腰三角形的性質,易證得 即可得,則可證得的切線;
(2)連接CD,根據(jù)直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OEAB,證得根據(jù)相似三角形的對應邊成比例,即可求得的長,然后利用三角函數(shù)的知識,求得的長,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

試題解析:(1)證明:連接OD,

OEAB

∴∠COE=CAD,EOD=ODA

OA=OD,

∴∠OAD=ODA,

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD,

ED的切線;

(2)連接CD,交OEM,

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB,

AB=5,

AC是直徑,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面積為

型】解答
束】
25

【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.

(1)求ba的關系式和拋物線的頂點D坐標(用a的代數(shù)式表示);

(2)直線與拋物線的另外一個交點記為N,求DMN的面積與a的關系式;

(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關于原點對稱,現(xiàn)將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在斜坡的頂部有一鐵塔AB,BCD的中點,CD是水平的,在陽光的照射下,塔影DE留在坡面上.已知鐵塔底座寬CD=12 m,塔影長DE=18 m,小明和小華的身高都是1.6m,同一時刻,小明站在點E處,影子在坡面上,小華站在平地上,影子也在平地上,兩人的影長分別為2m1m,那么塔高AB為( 。

A. 24m B. 22m C. 20m D. 18m

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:a是最大的負整數(shù),b是最小的正整數(shù),且ca+b,請回答下列問題:

1)請直接寫出a,b,c的值:a   b   ;c   ;

2a,b,c在數(shù)軸上所對應的點分別為A,B,C,請在如圖的數(shù)軸上表示出A,B,C三點;

3)在(2)的情況下.點A,B,C開始在數(shù)軸上運動,若點A,點C以每秒1個單位的速度向左運動,同時,點B以每秒5個單位長度的速度向右運動,假設t秒鐘過后,若點B與點C之間的距離表示為BC,點A與點B之間的距離表示為AB,請問:ABBC的值是否隨著時間的變化而改變?若變化,請說明理由;若不變,請求出ABBC的值.

查看答案和解析>>

同步練習冊答案