【題目】如圖,在△ABC中,點(diǎn)B,C是x軸上的兩個(gè)定點(diǎn),∠ACB=90°,AC=BC,點(diǎn)A(l,3),點(diǎn)P是x軸上的一個(gè)動(dòng)點(diǎn),點(diǎn)E是AB的中點(diǎn),在△PEF中,∠PEF=90°,PE=EF

(1)如圖1,當(dāng)點(diǎn)P與坐標(biāo)原點(diǎn)重合時(shí):①求證△PCE≌△FBE;②求點(diǎn)F的坐標(biāo);
(2)如圖2,當(dāng)點(diǎn)P在線段CB上時(shí),求證SCPE=SAEF
(3)如圖3,當(dāng)點(diǎn)P在線段CB的延長(zhǎng)線時(shí),若SAEF=4SPBE則此刻點(diǎn)F的坐標(biāo)為

【答案】
(1)

證明:如圖1中,

①∵A(1,3),B(4,0),

∴AC=BC=3,△ACB是等腰直角三角形,

∵AE=EB,

∴CE=AE=EB,CE⊥AB,∠ECB=∠EBC=45°,

∴∠CEB=∠OEF=90°,∠ECO=135°,

∴∠OEC=∠FEB,∵OE=EF,EC=EB,

∴△EOC≌△EFB,即△PCE≌△FBE..

②∵△PCE≌△FBE.

∴OC=BF=1,∠EBF=∠OCE=135°,

∴∠OBF=90°,

∴BF⊥OB,

∴F(4,﹣1)


(2)

證明:如圖2中,作PM⊥CE于M,F(xiàn)N⊥EB于N.

由(1)可知∠OEC=∠FEB,OE=EF,EC=EB,

∴△ECP≌△EBF,

∵PM⊥CE于M,F(xiàn)N⊥EB于N,

∴PM=FN(全等三角形對(duì)應(yīng)邊上的高相等),

∵SCPE= CEPM,SAEF= AEFN,

∵CE=AE,PM=NF,

∴SCPE=SAEF


(3)(4,4)
【解析】(3)解:如圖3中,

由(2)可知△ECP≌△EBF,推出PC=BF,BF⊥CP,
∵SCPE=SAEF , SAEF=4SPBE ,
∴SCPE=4SPBE ,
∴PC=4PB,
∴BC=3PB,PB=1,PC=4,
∴BF=PC=4,
∴點(diǎn)F坐標(biāo)為(4,4).
所以答案是(4,4).
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解全等三角形的性質(zhì)的相關(guān)知識(shí),掌握全等三角形的對(duì)應(yīng)邊相等; 全等三角形的對(duì)應(yīng)角相等.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,AD⊥BC于D點(diǎn),E、F分別為DB、DC的中點(diǎn),則圖中共有全等三角形對(duì).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a、b、c滿足:① 與2x2+ay3的和是單項(xiàng)式; ② ,
(1)求a、b、c的值;
(2)求代數(shù)式(5b2﹣3c2)﹣3(b2﹣c2)﹣(﹣c2)+2016abc的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC紙片中,C=90°,AC=6,BC=8,點(diǎn)D在邊BC 上,以AD為折痕將ABD折疊得到ABD,AB與邊BC交于點(diǎn)EDEB為直角三角形,則BD的長(zhǎng)是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:-3a(4b-1)=_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知代數(shù)式2a3bn+1與﹣3am﹣2b2是同類項(xiàng),則2m+3n=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某同學(xué)把一塊三角形的玻璃打碎成了三塊,現(xiàn)在要到玻璃店去配一塊完全一樣的玻璃,那么最省事的辦法是(

A.帶①去
B.帶②去
C.帶③去
D.帶①和②去

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若4a﹣9與3a﹣5互為相反數(shù),則a的值為(
A.1
B.﹣1
C.2
D.0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠1=100°,∠2=145°,那么∠3=(

A.55°
B.65°
C.75°
D.85°

查看答案和解析>>

同步練習(xí)冊(cè)答案