【題目】(1)如圖①,畫一條平行于BC的直線,使其將△ABC分成兩部分,且所分三角形與梯形面積比為1:3;

(2)如圖②,△ABCAB=4,AC=3BC=6,D是△ABCAC邊上的點,AD=2,過點D畫一條直線l將△ABC分成兩部分,l與△ABC另一邊的交點為點P,使其所分的一個三角形與△ABC相似,并求出DP的長;

(3)如圖③所示,在等腰△ABC中,CA=CB=10AB=12.在△ABC中放入正方形DEMN和正方形EFPH,使得DE.EF在邊AB上,點P.N分別在邊CB.CA上,若較大正方形的邊長為a,請用含a的代數(shù)式表示較小正方形的邊長.

【答案】1)見解析;(2)見解析,PD=4;(3)小正方形邊長為.

【解析】

1)直線MN將三角形與梯形面積比為1:3,則△AMN與△ABC的面積比是1:4,則相似比是1:2,所以過AB,AC的中點M,NBC的平行線即可;

2)先求到CD=1,再分DP// BC,DP//AB,∠CDP=B, ADP=B四種情況討論,可得到DP的長;

3)設正方形EFPH的邊長為b,過點CCGAB于點G,證得△ADN∽△AGC,△BFP∽△BGC,得到,,再根據(jù)AD+DE +EF +FB=AB=12,所以,從而得到小正方形邊長為.

: (1)如圖所示:直線MN即為所求,M.N分別為AB.AC中點

(2)AC=3, AD=2

CD=1

①當DP// BC時,△APD∽△ABC

,即

PD=4

②當DP//AB時,△CDP∽△CAB

,即

③當∠CDP=B時,△CDP∽△CBA

,即

④當∠ADP=B時,,則△ADP∽△ABC,

,即

(3)設正方形EFPH的邊長為b,過點CCGAB于點G,

CA=CB=10 AB=12

AG=BG=6

RtAGC中,由勾股定理,得:

由題意得: ADN∽△AGC,△BFP∽△BGC

,

,

AD+DE +EF +FB=12

,即a+b=

綜上所述,小正方形邊長為

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長為1,GCD邊上的一個動點(點GC、D不重合),以CG為一邊向正方形ABCD外作正方形GCEF,連接DEBG的延長線于點H.

1)求證:①△BCG≌△DCE;②BH⊥DE.

2)當點G運動到什么位置時,BH垂直平分DE?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某茶葉經(jīng)銷商以每千克18元的價格購進一批寧波白茶鮮茶葉加工后出售, 已知加工過程中質(zhì)量損耗了40%, 該商戶對該茶葉試銷期間, 銷售單價不低于成本單價,且每千克獲利不得高于成本單價的60%,經(jīng)試銷發(fā)現(xiàn),每天的銷售量y(千克)與銷售單價x(元/千克)符合一次函數(shù),且x=35時,y=45;x=42時,y=38

1)求一次函數(shù)的表達式;

2)若該商戶每天獲得利潤(不計加工費用)W元,試寫出利潤W與銷售單價x之間的關系式;銷售單價每千克定為多少元時,商戶每天可獲得最大利潤,最大利潤是多少元?

3)若該商戶每天獲得利潤不低于225元,試確定銷售單價x的范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,BD平分∠ABC交AC于D,EF垂直平分BD,分別交AB,BC,BD于E,F(xiàn),G,連接DE,DF.

(1)求證:DE=DF;

2)若∠ABC=30°,C=45°,DE=4,求CF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】11·欽州)把一張矩形紙片ABCD按如圖方式折疊,使頂點B和頂點D重合,折痕為EF.若BF4FC2,則DEF的度數(shù)是_

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解全校學生上學的交通方式,該校九年級(8)班的5名同學聯(lián)合設計了一份調(diào)查問卷,對該校部分學生進行了隨機調(diào)查.按A(騎自行車)、B(乘公交車)、C(步行)、D(乘私家車)、E(其他方式)設置選項,要求被調(diào)查同學從中單選.并將調(diào)查結(jié)果繪制成條形統(tǒng)計圖1和扇形統(tǒng)計圖2,根據(jù)以上信息,解答下列問題:

1)本次接受調(diào)查的總?cè)藬?shù)是 人,并把條形統(tǒng)計圖補充完整;

2)在扇形統(tǒng)計圖中,步行的人數(shù)所占的百分比是 其他方式所在扇形的圓心角度數(shù)是 ;

3)已知這5名同學中有2名女同學,要從中選兩名同學匯報調(diào)查結(jié)果.請你用列表法或畫樹狀圖的方法,求出恰好選出1名男生和1名女生的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一塊材料的形狀是銳角三角形ABC,邊BC長120mm,高AD為80mm,把它加工成正方形零件,使正方形的一邊在BC上,其余兩個頂點分別在AB,AC上.

(1)圖中與ABC相似的三角形是哪一個,說明理由;

(2)這個正方形零件的邊長為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)的圖象如圖,分析下列四個結(jié)論:①其中正確的結(jié)論有

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,拋物線Gymx2+2mx+m1m0)與y軸交于點C,拋物線G的頂點為D,直線:ymx+m1m0).

1)當m1時,畫出直線和拋物線G,并直接寫出直線被拋物線G截得的線段長.

2)隨著m取值的變化,判斷點CD是否都在直線上并說明理由.

3)若直線被拋物線G截得的線段長不小于2,結(jié)合函數(shù)的圖象,直接寫出m的取值范圍.

查看答案和解析>>

同步練習冊答案