【題目】如圖,一塊材料的形狀是銳角三角形ABC,邊BC長120mm,高AD為80mm,把它加工成正方形零件,使正方形的一邊在BC上,其余兩個頂點分別在AB,AC上.
(1)圖中與△ABC相似的三角形是哪一個,說明理由;
(2)這個正方形零件的邊長為多少?
科目:初中數學 來源: 題型:
【題目】已知:拋物線y=x2+bx+c經過點(2,-3)和(4,5)。
(1)求拋物線的表達式及頂點坐標;
(2)將拋物線沿x軸翻折,得到圖象G,求圖象G的表達式;
(3)在(2)的條件下,當-2<x<2時,直線y=m與該圖象有一個公共點,求m的值或取值范圍。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某工廠生產的某種產品按質量分為個檔次,生產第一檔次(即最低檔次)的產品一天生產件,每件利潤元,每提高一個檔次,利潤每件增加元.
(1)每件利潤為元時,此產品質量在第幾檔次?
(2)由于生產工序不同,此產品每提高一個檔次,一天產量減少件.若生產第檔的產品一天的總利潤為元(其中為正整數,且≤≤),求出關于的函數關系式;若生產某檔次產品一天的總利潤為元,該工廠生產的是第幾檔次的產品?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商場購進一種每件價格為100元的新商品,在商場試銷發(fā)現:銷售單價x(元/件)與每天銷售量y(件)之間滿足如圖所示的關系:(1)求出y與x之間的函數關系式;(2)如果商店銷售這種商品,每天要獲得1500元利潤,那么每件商品的銷售價應定為多少元?(3)寫出每天的利潤W與銷售單價x之間的函數關系式;若你是商場負責人,會將售價定為多少,來保證每天獲得的利潤最大,最大利潤是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】東臺市為打造“綠色城市”,積極投入資金進行河道治污與園林綠化兩項工程,已知年投資萬元,預計年投資萬元.若這兩年內平均每年投資增長的百分率相同.
求平均每年投資增長的百分率;
按此增長率,計算年投資額能否達到萬?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在坐標系xOy中,拋物線y=﹣x2+bx+c經過點A(﹣3,0)和B(1,0),與y軸交于點C,
(1)求拋物線的表達式;
(2)若點D為此拋物線上位于直線AC上方的一個動點,當△DAC的面積最大時,求點D的坐標;
(3)設拋物線頂點關于y軸的對稱點為M,記拋物線在第二象限之間的部分為圖象G.點N是拋物線對稱軸上一動點,如果直線MN與圖象G有公共點,請結合函數的圖象,直接寫出點N縱坐標t的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】問題情境:如圖①,在直角三角形ABC中,∠BAC=90,AD⊥BC于點D,可知:∠BAD=∠C(不需要證明);
(1)特例探究:如圖②,∠MAN=90,射線AE在這個角的內部,點B.C在∠MAN的邊AM、AN上,且AB=AC,CF⊥AE于點F,BD⊥AE于點D.證明:△ABD≌△CAF;
(2)歸納證明:如圖③,點B,C在∠MAN的邊AM、AN上,點E,F在∠MAN內部的射線AD上,∠1、∠2分別是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC.求證:△ABE≌△CAF;
(3)拓展應用:如圖④,在△ABC中,AB=AC,AB>BC.點D在邊BC上,CD=2BD,點E.F在線段AD上,∠1=∠2=∠BAC.若△ABC的面積為18,求△ACF與△BDE的面積之和是多少?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com