【題目】如圖,在平面直角坐標(biāo)系中,直線y= x+2與x軸交于點(diǎn)A,與y軸交于點(diǎn)C,拋物線y= x2+bx+c經(jīng)過(guò)A、C兩點(diǎn),與x軸的另一交點(diǎn)為點(diǎn)B.

(1)求拋物線的函數(shù)表達(dá)式;
(2)點(diǎn)D為直線AC上方拋物線上一動(dòng)點(diǎn);
①連接BC、CD,設(shè)直線BD交線段AC于點(diǎn)E,△CDE的面積為S1 , △BCE的面積為S2 , 求 的最大值;
②過(guò)點(diǎn)D作DF⊥AC,垂足為點(diǎn)F,連接CD,是否存在點(diǎn)D,使得△CDF中的某個(gè)角恰好等于∠BAC的2倍?若存在,求點(diǎn)D的橫坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】
(1)

解:根據(jù)題意得A(﹣4,0),C(0,2),

∵拋物線y=﹣ x2+bx+c經(jīng)過(guò)A、C兩點(diǎn),

,

∴y=﹣ x2 x+2


(2)

解:①如圖,

令y=0,

∴﹣ x2 x+2=0,

∴x1=﹣4,x2=1,

∴B(1,0),

過(guò)D作DM⊥x軸于M,過(guò)B作BN⊥x軸交于AC于N,

∴DM∥BN,

∴△DME∽△BNE,

= =

設(shè)D(a,=﹣ a2 a+2),

∴M(a, a+2),

∵B(1.0),

∴N(1, ),

= = (a+2)2+

∴當(dāng)a=2時(shí), 的最大值是

②∵A(﹣4,0),B(1,0),C(0,2),

∴AC=2 ,BC= ,AB=5,

∴AC2+BC2=AB2,

∴△ABC是以∠ACB為直角的直角三角形,取AB的中點(diǎn)P,

∴P(﹣ ,0),

∴PA=PC=PB=

∴∠CPO=2∠BAC,

∴tan∠CPO=tan(2∠BAC)=

過(guò)作x軸的平行線交y軸于R,交AC的延長(zhǎng)線于G,

情況一:如圖,

∴∠DCF=2∠BAC=∠DGC+∠CDG,

∴∠CDG=∠BAC,

∴tan∠CDG=tan∠BAC=

,

令D(a,﹣ a2 a+2),

∴DR=﹣a,RC=﹣ a2 a,

∴a1=0(舍去),a2=﹣2,

∴xD=﹣2,

情況二,∴∠FDC=2∠BAC,

∴tan∠FDC= ,

設(shè)FC=4k,

∴DF=3k,DC=5k,

∵tan∠DGC= = ,

∴FG=6k,

∴CG=2k,DG=3 k,∴

∴RC= k,RG= k,

DR=3 k﹣ k= k,

= = ,

∴a1=0(舍去),a2=

點(diǎn)D的橫坐標(biāo)為﹣2或﹣


【解析】(1)根據(jù)題意得到A(﹣4,0),C(0,2)代入y=﹣ x2+bx+c,于是得到結(jié)論;(2)①如圖,令y=0,解方程得到x1=﹣4,x2=1,求得B(1,0),過(guò)D作DM⊥x軸于M,過(guò)B作BN⊥x軸交于AC于N,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論;②根據(jù)勾股定理的逆定理得到△ABC是以∠ACB為直角的直角三角形,取AB的中點(diǎn)P,求得P(﹣ ,0),得到PA=PC=PB= ,過(guò)作x軸的平行線交y軸于R,交AC的延線于G,情況一:如圖,∠DCF=2∠BAC=∠DGC+∠CDG,情況二,∠FDC=2∠BAC,解直角三角形即可得到結(jié)論.
【考點(diǎn)精析】本題主要考查了二次函數(shù)的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握增減性:當(dāng)a>0時(shí),對(duì)稱軸左邊,y隨x增大而減;對(duì)稱軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱軸左邊,y隨x增大而增大;對(duì)稱軸右邊,y隨x增大而減小才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人在1800米長(zhǎng)的直線道路上跑步,甲、乙兩人同起點(diǎn)、同方向出發(fā),并分別以不同的速度勻速前進(jìn).已知,甲出發(fā)30秒后,乙出發(fā),乙到終點(diǎn)后立即返回,并以原來(lái)的速度前進(jìn),最后與甲相遇,此時(shí)跑步結(jié)束.如圖,y(米)表示甲、乙兩人之間的距離,t(秒)表示甲出發(fā)的時(shí)間,圖中折線及數(shù)據(jù)表示整個(gè)跑步過(guò)程中y與t函數(shù)關(guān)系.那么,乙到終點(diǎn)后秒與甲相遇.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在“宏揚(yáng)傳統(tǒng)文化,打造書(shū)香校園”活動(dòng)中,學(xué)校計(jì)劃開(kāi)展四項(xiàng)活動(dòng):“A﹣國(guó)學(xué)誦讀”、“B﹣演講”、“C﹣課本劇”、“D﹣書(shū)法”,要求每位同學(xué)必須且只能參加其中一項(xiàng)活動(dòng),學(xué)校為了了解學(xué)生的意愿,隨機(jī)調(diào)查了部分學(xué)生,結(jié)果統(tǒng)計(jì)如下:
(1)如圖,希望參加活動(dòng)C占20%,希望參加活動(dòng)B占15%,則被調(diào)查的總?cè)藬?shù)為人,扇形統(tǒng)計(jì)圖中,希望參加活動(dòng)D所占圓心角為度,根據(jù)題中信息補(bǔ)全條形統(tǒng)計(jì)圖.
(2)學(xué),F(xiàn)有800名學(xué)生,請(qǐng)根據(jù)圖中信息,估算全校學(xué)生希望參加活動(dòng)A有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市為創(chuàng)建全國(guó)文明城市,開(kāi)展“美化綠化城市”活動(dòng),計(jì)劃經(jīng)過(guò)若干年使城區(qū)綠化總面積新增360萬(wàn)平方米.自2013年初開(kāi)始實(shí)施后,實(shí)際每年綠化面積是原計(jì)劃的1.6倍,這樣可提前4年完成任務(wù).
(1)問(wèn)實(shí)際每年綠化面積多少萬(wàn)平方米?
(2)為加大創(chuàng)城力度,市政府決定從2016年起加快綠化速度,要求不超過(guò)2年完成,那么實(shí)際平均每年綠化面積至少還要增加多少萬(wàn)平方米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,∠ABD、∠CDB的平分線BE、DF分別交邊AD、BC于點(diǎn)E、F.
(1)求證:四邊形BEDF是平行四邊形;
(2)當(dāng)∠ABE為多少度時(shí),四邊形BEDF是菱形?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某體育老師測(cè)量了自己任教的甲、乙兩班男生的身高,并制作了如下不完整的統(tǒng)計(jì)圖表.

身高分組

頻數(shù)

頻率

152≤x<155

3

0.06

155≤x<158

7

0.14

158≤x<161

m

0.28

161≤x<164

13

n

164≤x<167

9

0.18

167≤x<170

3

0.06

170≤x<173

1

0.02


根據(jù)以上統(tǒng)計(jì)圖表完成下列問(wèn)題:
(1)統(tǒng)計(jì)表中m= , n= , 并將頻數(shù)分布直方圖補(bǔ)充完整
(2)在這次測(cè)量中兩班男生身高的中位數(shù)在:范圍內(nèi);
(3)在身高≥167cm的4人中,甲、乙兩班各有2人,現(xiàn)從4人中隨機(jī)推選2人補(bǔ)充到學(xué)校國(guó)旗護(hù)衛(wèi)隊(duì)中,請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法求出這兩人都來(lái)自相同班級(jí)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(≠0)的圖象如圖,給出下列四個(gè)結(jié)論:①4ac﹣b2<0;②3b+2c<0;③4a+c<2b;④m(am+b)+b<a(m≠1),其中結(jié)論正確的個(gè)數(shù)是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,O為原點(diǎn),四邊形ABCO是矩形,點(diǎn)A,C的坐標(biāo)分別是A(0,2)和C(2 ,0),點(diǎn)D是對(duì)角線AC上一動(dòng)點(diǎn)(不與A,C重合),連結(jié)BD,作DE⊥DB,交x軸于點(diǎn)E,以線段DE,DB為鄰邊作矩形BDEF.

(1)填空:點(diǎn)B的坐標(biāo)為
(2)是否存在這樣的點(diǎn)D,使得△DEC是等腰三角形?若存在,請(qǐng)求出AD的長(zhǎng)度;若不存在,請(qǐng)說(shuō)明理由;
(3)①求證: = ;
②設(shè)AD=x,矩形BDEF的面積為y,求y關(guān)于x的函數(shù)關(guān)系式(可利用①的結(jié)論),并求出y的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角坐標(biāo)系中,矩形OABC的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,頂點(diǎn)A,C分別在坐標(biāo)軸上,頂點(diǎn)B的坐標(biāo)為(4,2).過(guò)點(diǎn)D(0,3)和E(6,0)的直線分別與AB,BC交于點(diǎn)M,N.

(1)求過(guò)O,B,E三點(diǎn)的二次函數(shù)關(guān)系式;
(2)求直線DE的解析式和點(diǎn)M的坐標(biāo);
(3)若反比例函數(shù)y= (x>0)的圖象經(jīng)過(guò)點(diǎn)M,求該反比例函數(shù)的解析式,并通過(guò)計(jì)算判斷點(diǎn)N是否在該函數(shù)的圖象上.

查看答案和解析>>

同步練習(xí)冊(cè)答案