【題目】點(diǎn)P(m﹣1,2m+1)在第一象限,則m的取值范圍是

【答案】m>1
【解析】解:∵點(diǎn)P(m﹣1,2m+1)在第一象限, ∴m﹣1>0,2m+1>0,
解得:m>1,
所以答案是:m>1.
【考點(diǎn)精析】本題主要考查了一元一次不等式組的解法的相關(guān)知識點(diǎn),需要掌握解法:①分別求出這個不等式組中各個不等式的解集;②利用數(shù)軸表示出各個不等式的解集;③找出公共部分;④用不等式表示出這個不等式組的解集.如果這些不等式的解集的沒有公共部分,則這個不等式組無解 ( 此時也稱這個不等式組的解集為空集 )才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了測量出大樓AB的高度,從距離樓底B處50米的點(diǎn)C(點(diǎn)C與樓底B在同一水平面上)出發(fā),沿傾斜角為30°的斜坡CD前進(jìn)20米到達(dá)點(diǎn)D,在點(diǎn)D處測得樓頂A的仰角為64°,求大樓AB的高度(結(jié)果精確到1米)(參考數(shù)據(jù):sin64°≈0.9,cos64°≈0.4,tan64°≈2.1, ≈1.7)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與一次函數(shù)的圖象交于, 兩點(diǎn),點(diǎn)的坐標(biāo)為,點(diǎn)在第一象限內(nèi),點(diǎn)是二次函數(shù)圖象的頂點(diǎn),點(diǎn)是一次函數(shù)的圖象與軸的交點(diǎn),過點(diǎn)軸的垂線,垂足為,且

)求直線和直線的解析式.

2)點(diǎn)是線段上一點(diǎn),點(diǎn)是線段上一點(diǎn), 軸,射線與拋物線交于點(diǎn),過點(diǎn)軸于點(diǎn) 于點(diǎn),當(dāng)的乘積最大時,在線段上找一點(diǎn)(不與點(diǎn),點(diǎn)重合),使的值最小,求點(diǎn)的坐標(biāo)和的最小值.

)如圖,直線上有一點(diǎn),將二次函數(shù)沿直線平移,平移的距離是,平移后拋物線使點(diǎn),點(diǎn)的對應(yīng)點(diǎn)分別為點(diǎn),點(diǎn);當(dāng)是直角三角形時,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算(2)201922018的結(jié)果是 ( )

A. 22018B. 22018C. 22019D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的分式方程 + = .
(1)若方程的增根為x=2,求m的值;
(2)若方程有增根,求m的值;
(3)若方程無解,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,若點(diǎn)的縱坐標(biāo)滿足, 則稱點(diǎn)是點(diǎn)的“絕對點(diǎn)”.

)點(diǎn)的“絕對點(diǎn)”的坐標(biāo)為.

)點(diǎn)是函數(shù)的圖像上的一點(diǎn),點(diǎn)是點(diǎn)的“絕對點(diǎn)”.若點(diǎn)與點(diǎn)重合,求點(diǎn)的坐標(biāo).

)點(diǎn)的“絕對點(diǎn)”是函數(shù)的圖像上的一點(diǎn).當(dāng)時,求線段的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A(0,2),B(﹣2,0),點(diǎn)D是x軸上一個動點(diǎn),以AD為一直角邊在一側(cè)作等腰直角三角形ADE,∠DAE=90°,若△ABD為等腰三角形時點(diǎn)E的坐標(biāo)為___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,將點(diǎn)(﹣2,3)關(guān)于原點(diǎn)的對稱點(diǎn)向左平移2個單位長度得到的點(diǎn)的坐標(biāo)是( 。
A.(4,﹣3)
B.(﹣4,3)
C.(0,﹣3)
D.(0,3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】P△ABCBC邊的延長線上一點(diǎn),A=50°,∠B=70°,則ACP________

查看答案和解析>>

同步練習(xí)冊答案