【題目】如圖點分別是邊長為4cm的等邊三角形邊動點,點從頂點沿向點運動,點同時從頂點沿向運動,它們的速度都是,當?shù)竭_終點時停止運動,設運動時間為t秒,連接交于點M.
(1)求證:;
(2)點在運動的過程中,變化嗎?若變化,請說明理由,若不變,則求出它的度數(shù);
(3)當為何值時是直角三角形?
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線分別交x軸、y軸于點B,C,正方形AOCD的頂點D在第二象限內,E是BC中點,OF⊥DE于點F,連結OE,動點P在AO上從點A向終點O勻速運動,同時,動點Q在直線BC上從某點Q1向終點Q2勻速運動,它們同時到達終點.
(1)求點B的坐標和OE的長;
(2)設點Q2為(m,n),當tan∠EOF時,求點Q2的坐標;
(3)根據(jù)(2)的條件,當點P運動到AO中點時,點Q恰好與點C重合.
①延長AD交直線BC于點Q3,當點Q在線段Q2Q3上時,設Q3Q=s,AP=t,求s關于t的函數(shù)表達式.
②當PQ與△OEF的一邊平行時,求所有滿足條件的AP的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】地下停車場的設計大大緩解了住宅小區(qū)停車難的問題,如圖是龍泉某小區(qū)的地下停車庫坡道入口的設計示意圖,其中,AB⊥BD,∠BAD=18°,C在BD上,BC=0.5m.根據(jù)規(guī)定,地下停車庫坡道入口上方要張貼限高標志,以便告知駕駛員所駕車輛能否安全駛入.小剛認為CD的長就是所限制的高度,而小亮認為應該以CE的長作為限制的高度.小剛和小亮誰說得對?請你判斷并計算出正確的限制高度.(結果精確到0.1m,參考數(shù)據(jù):sin18°≈0.31,cos18°≈0.95,tan18°≈0.325)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】連接正方形四邊的中點所構成的正方形,我們稱其原正方形的中點正方形,如圖,已知正方形的中點正方形,再作正方形的中點正方形,這樣不斷下去,第n次所做的中點正方形,若正方形的邊長為1,若設中點正方形的面積為,則___________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=2,∠BAC=45°,將△ABC繞點A按順時針方向旋轉角α得到△AEF,且0°<α≤180°,連接BE,CF相交于點D.
(1)求證:BE=CF;
(2)當α=90°時,求四邊形AEDC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】劉徵是我國古代最杰出的數(shù)學家之一,他在《九算術圓田術)中用“割圓術”證明了圓面積的精確公式,并給出了計算圓周率的科學方法(注:圓周率=圓的周長與該圓直徑的比值)“割圓術”就是以“圓內接正多邊形的面積”,來無限逼近“圓面積”,劉徽形容他的“割圓術”說:割之彌細,所失彌少,割之又割,以至于不可割,則與圓合體,而無所失矣.劉徽計算圓周率是從正六邊形開始的,易知圓的內接正六邊形可分為六個全等的正三角形,每個三角形的邊長均為圓的半徑R.此時圓內接正六邊形的周長為6R,如果將圓內接正六邊形的周長等同于圓的周長,可得圓周率為3.當正十二邊形內接于圓時,如果按照上述方法計算,可得圓周率為_____.(參考數(shù)據(jù):sinl5°=0.26)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著移動終端設備的升級換代,手機已經成為我們生活中不可缺少的一部分,為了解中學生在假期使用手機的情況(選項:(A)和同學親友聊天;(B)學習:(C)購物;(D)游戲;(E)其他),端午節(jié)后某中學在全校范圍內隨機抽取了若干名學生進行調查,得到如下圖表(部分信息未給出):
選項 | 頻數(shù) | 頻率 |
A | ||
B | ||
C | ||
D | ||
E |
根據(jù)以上信息解答下列問題:
(1)求本次參與調查的總人數(shù).
(2)___________,___________,___________,并補全條形統(tǒng)計圖.
(3)若該中學約有800名學生,估計全校學生中利用手機購物或玩游戲的共有多少人?并根據(jù)以上調查結果,就中學生如何合理使用手機給出你的一條建議.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,以為直徑的交于點,交于點,是的切線;交于點.
(1)求證:;
(2)填空:①若的面積為,則的面積為 ;
②當的度數(shù)為 時,四邊形是菱形.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com