【題目】如圖,AC是矩形ABCD的對(duì)角線(xiàn),⊙OABC的內(nèi)切圓,現(xiàn)將矩形ABCD按如圖所示的方式折疊,使點(diǎn)D與點(diǎn)O重合,折痕為FG.點(diǎn)F,G分別在邊AD,BC上,連結(jié)OGDG.若OGDG,且⊙O的半徑長(zhǎng)為1,則下列結(jié)論不成立的是( 。

A.BCAB2B.AC2ABC.AFCDD.CD+DF5

【答案】C

【解析】

如圖,設(shè)⊙OBC的切點(diǎn)為M,連接MO并延長(zhǎng)MOAD于點(diǎn)N,根據(jù)折疊的性質(zhì)得到OGDG,根據(jù)全等三角形的性質(zhì)得到OMGC1,CDGMBCBMGCBC2即可判斷A;設(shè)ABaBCb,ACc,⊙O的半徑為r,推出⊙ORtABC的內(nèi)切圓可得ra+bc),根據(jù)勾股定理得到BC+AB2+4,AC21+),即可判斷B;再設(shè)DFx,在RtONF中,FN3+1x,OFx,ON1+1,由勾股定理可得x4,即可判斷DC

解:如圖,設(shè)⊙OBC的切點(diǎn)為M,連接MO并延長(zhǎng)MOAD于點(diǎn)N,

∵將矩形ABCD按如圖所示的方式折疊,使點(diǎn)D與點(diǎn)O重合,折痕為FG,

OGDG

OGDG,

∴∠MGO+DGC90°

∵∠MOG+MGO90°,

∴∠MOG=∠DGC,

在△OMG和△GCD中,

,

∴△OMG≌△GCD,(AAS),

OMGC1,CDGMBCBMGCBC2

ABCD

BCAB2.故A正確;

設(shè)ABa,BCb,ACc,⊙O的半徑為r,

ORtABC的內(nèi)切圓可得ra+bc),

ca+b2

RtABC中,由勾股定理可得a2+b2=(a+b22,

整理得2ab4a4b+40,

又∵BCAB2b2+a,代入可得2a2+a)﹣4a42+a+40,

解得a11(舍去),a21+,

BC+AB2+4

AB1+,BC3+

AC21+),

AC2AB;故B正確;

再設(shè)DFx,在RtONF中,FN3+1x=2+x,OFxON1+1=,

由勾股定理可得(2+x2+2x2

解得x4,

CDDF+1﹣(4)=23,CD+DF+1+45,故D正確;

AFADDF21

AF≠CD,故C錯(cuò)誤;

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD中,AB=4,點(diǎn)EBA延長(zhǎng)線(xiàn)上一點(diǎn),點(diǎn)M、N分別為邊AB、BC上的點(diǎn),且AM=BN=1,連接CMND,過(guò)點(diǎn)MMFND與∠EAD的平分線(xiàn)交于點(diǎn)F,連接CF分別與AD、ND交于點(diǎn)G、H,連接MH,則下列結(jié)論正確的有( )個(gè)

MCND;②sinMFC=;③(BM+DG)=AM+AG;④SHMF=

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)yx22mxm2m1m為常數(shù)).

1)求證:不論m為何值,該二次函數(shù)的圖像與x軸總有兩個(gè)公共點(diǎn);

2)將該二次函數(shù)的圖像向下平移kk0)個(gè)單位長(zhǎng)度,使得平移后的圖像經(jīng)過(guò)點(diǎn)(0,-2),則k的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】國(guó)家計(jì)劃2035年前實(shí)施新能源汽車(chē),某公司為加快新舊動(dòng)能轉(zhuǎn)換,提高公司經(jīng)濟(jì)效益,決定對(duì)近期研發(fā)出的一種新型能源產(chǎn)品進(jìn)行降價(jià)促銷(xiāo).根據(jù)市場(chǎng)調(diào)查:這種新型能源產(chǎn)品銷(xiāo)售單價(jià)定為200元時(shí),每天可售出300個(gè);若銷(xiāo)售單價(jià)每降低1元,每天可多售出5個(gè).已知每個(gè)新型能源產(chǎn)品的成本為100.

問(wèn):(1)設(shè)該產(chǎn)品的銷(xiāo)售單價(jià)為元,每天的利潤(rùn)為._________(用含的代數(shù)式表示)

2)這種新型能源產(chǎn)品降價(jià)后的銷(xiāo)售單價(jià)為多少元時(shí),公司每天可獲利32000元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以BC為直徑的⊙OAB于點(diǎn)D,DEAC于點(diǎn)E,且∠AADE

(1)求證:DE是⊙O的切線(xiàn);

(2)若AD=16,DE=10,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,正方形ABCD在直角坐標(biāo)系中,其中AB邊在y軸上,其余各邊均與坐標(biāo)軸平行,直線(xiàn)lyx5沿y軸的正方向以每秒1個(gè)單位的速度平移,在平移的過(guò)程中,該直線(xiàn)被正方形ABCD的邊所截得的線(xiàn)段長(zhǎng)為m,平移的時(shí)間為t(秒),mt的函數(shù)圖象如圖2所示,則圖2b的值為(  )

A.3B.5C.6D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,,點(diǎn)是斜邊的中點(diǎn).點(diǎn)從點(diǎn)出發(fā)以的速度向點(diǎn)運(yùn)動(dòng),點(diǎn)同時(shí)從點(diǎn)出發(fā)以一定的速度沿射線(xiàn)方向運(yùn)動(dòng),規(guī)定當(dāng)點(diǎn)到終點(diǎn)時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為秒,連接、

1)填空:______;

2)當(dāng)且點(diǎn)運(yùn)動(dòng)的速度也是時(shí),求證:;

3)若動(dòng)點(diǎn)的速度沿射線(xiàn)方向運(yùn)動(dòng),在點(diǎn)、點(diǎn)運(yùn)動(dòng)過(guò)程中,如果存在某個(gè)時(shí)間,使得的面積是面積的兩倍,請(qǐng)你求出時(shí)間的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:ABC在直角坐標(biāo)平面內(nèi),三個(gè)頂點(diǎn)的坐標(biāo)分別為B3,4)、A(﹣3,2)、C1,0),正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)是一個(gè)單位長(zhǎng)度.

1)畫(huà)出ABC向下平移4個(gè)單位長(zhǎng)度得到的A1B1C1,點(diǎn)C1的坐標(biāo)是   ;

2)以點(diǎn)B為位似中心,在網(wǎng)格上畫(huà)出A2B2C2,使A2B2C2ABC位似,且位似比為12,點(diǎn)C2的坐標(biāo)是   ;(畫(huà)出圖形)

3)若Mab)為線(xiàn)段AC上任一點(diǎn),寫(xiě)出點(diǎn)M的對(duì)應(yīng)點(diǎn)M2的坐標(biāo)   

查看答案和解析>>

同步練習(xí)冊(cè)答案