【題目】已知二次函數(shù) ( 是常數(shù)).
(1)求證:不論 為何值,該函數(shù)的圖象與x軸沒有公共點;
(2)把該函數(shù)的圖象沿 軸向下平移多少個單位長度后,得到的函數(shù)的圖象與 軸只有一個公共點?
【答案】
(1)證明:∵△=(﹣2m)2﹣4×1×(m2+3)=4m2﹣4m2﹣12=﹣12<0
∴方程x2﹣2mx+m2+3=0沒有實數(shù)解, 即不論m為何值,該函數(shù)的圖象與x軸沒有公共點;
(2)解:y=x2﹣2mx+m2+3=(x﹣m)2+3,
∴把函數(shù)y=x2﹣2mx+m2+3的圖象沿y軸向下平移3個單位長度后,得到的函數(shù)的圖象與x軸只有一個公共點.
【解析】(1)先求出b2-4ac,再將它與0比較大小即可得證。
(2)先將函數(shù)解析式化成頂點形式,得到的函數(shù)的圖象要與 x 軸只有一個公共點,則頂點點縱坐標為0 ,即可求出平移的單位。
【考點精析】通過靈活運用拋物線與坐標軸的交點,掌握一元二次方程的解是其對應的二次函數(shù)的圖像與x軸的交點坐標.因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點.當b2-4ac>0時,圖像與x軸有兩個交點;當b2-4ac=0時,圖像與x軸有一個交點;當b2-4ac<0時,圖像與x軸沒有交點.即可以解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】在等邊△ABC的頂點A、C處各有一只蝸牛,它們同時出發(fā),分別以每分鐘1米的速度由A向B和由C向A爬行,其中一只蝸牛爬到終點時,另一只也停止運動,經過t分鐘后,它們分別爬行到D、E處,請問:
(1)如圖1,在爬行過程中,CD和BE始終相等嗎,請證明?
(2)如果將原題中的“由A向B和由C向A爬行”,改為“沿著AB和CA的延長線爬行”,EB與CD交于點Q,其他條件不變,蝸牛爬行過程中∠CQE的大小保持不變,請利用圖2說明:∠CQE=60°;
(3)如果將原題中“由C向A爬行”改為“沿著BC的延長線爬行,連接DE交AC于F”,其他條件不變,如圖3,則爬行過程中,證明:DF=EF
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司銷售一種進價為20 (元/個)的計算器,其銷售量y (萬個)與銷售價格x (元/個)之間為一次函數(shù)關系,其變化如下表:
價格x (元/個) | … | 30 | 50 | … |
銷售量y (萬個) | … | 5 | 3 | … |
同時,銷售過程中的其他開支(不含進價)總計40萬元.若該公司要獲得40萬元的凈利潤,且盡可能讓顧客得到實惠,那么銷售價格應定為多少?
(注:凈利潤=總銷售額﹣總進價﹣其他開支)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,A、B、C三地依次在一直線上,兩輛汽車甲、乙分別從A、B兩地同時出發(fā)駛向C地,如圖②,是兩輛汽車行駛過程中到C地的距離s(km)與行駛時間t(h)的關系圖象,其中折線段EF﹣FG是甲車的圖象,線段OM是乙車的圖象.
(1)圖②中,a的值為 ;點M的坐標為 ;
(2)當甲車在乙車與B地的中點位置時,求行駛的時間t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,將兩塊三角板的直角頂點重合.
(1)寫出以C為頂點的相等的角;
(2)若∠ACB=150°,請直接寫出∠DCE的度數(shù);
(3)寫出∠ACB與∠DCE之間所具有的數(shù)量關系;
(4)當三角板ACD繞點C旋轉時,你所寫出的(3)中的關系是否變化?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,O為原點,點A(4,6).
(1)如圖①,過點A作AB⊥軸,垂足為B,則三角形AOB的面積為 ;
(2)如圖②,將線段OA向右平移3個單位長度,再向下平移1個單位長度,得到線段.
①求四邊形的面積;
②若P是射線OA上的一動點,連接、,請畫出圖形,并直接寫出與,的數(shù)量關系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中有一個△ABC,頂點A(﹣1,3),B(2,0),C(﹣3,﹣1).
(1)畫出△ABC關于y軸的對稱軸圖形△A1B1C1(不寫畫法);
點A1的坐標為 ;點B1的坐標為 ;點C1的坐標為 .
(2)若網(wǎng)格上的每個小正方形的邊長為1,則△ABC的面積是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com