【題目】拋物線y=ax2+bx+c的圖象如圖,則下列結(jié)論:①abc>0;②a+b+c=2;③b2﹣4ac<0;④b<2a.其中正確的結(jié)論是( 。
A. ①② B. ②③ C. ②④ D. ③④
【答案】C
【解析】
①由拋物線的開口、對稱軸的位置以及拋物線與y軸交點的位置,即可得出a>0,﹣<0,c<0,進(jìn)而可得出abc<0,結(jié)論①錯誤;②由點(1,2)在拋物線上,利用二次函數(shù)圖象上點的坐標(biāo)特征,即可得出a+b+c=2,結(jié)論②正確;③由拋物線與x軸有兩個交點,可得出b2﹣4ac>0,結(jié)論③錯誤;④由﹣>﹣1,a>0,
可得出b<2a,結(jié)論④正確.綜上此題得解
①∵拋物線開口向上,與y軸交于負(fù)半軸,對稱軸在y軸左側(cè),
∴a>0,﹣<0,c<0,
∴b>0,
∴abc<0,結(jié)論①錯誤;
②∵當(dāng)x=1時,y=2,
∴a+b+c=2,結(jié)論②正確;
③∵拋物線與x軸有兩個交點,
∴b2﹣4ac>0,結(jié)論③錯誤;
④∵﹣>﹣1,a>0,
∴b<2a,結(jié)論④正確.
故選:C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于(x1,0),且﹣1<x1<0,對稱軸x=1.如圖所示,有下列5個結(jié)論:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的實數(shù)).其中所有結(jié)論正確的是______(填寫番號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程ax2+bx=0 (a≠0)的一個根是x=2018,,則方程a(x+2)2+bx+2b=0的根是___________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,DE⊥AB,BF⊥CD,垂足分別為E,F(xiàn).
(1)求證:△ADE≌△CBF;
(2)求證:四邊形BFDE為矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+(2m+1)x+m2﹣2=0.
(1)若該方程有兩個實數(shù)根,求m的最小整數(shù)值;
(2)若方程的兩個實數(shù)根為x1,x2,且(x1﹣x2)2+m2=21,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c與x軸交于A,B(1,0)兩點,與y軸交于點C,直線y=x﹣2經(jīng)過A,C兩點,拋物線的頂點為D.
(1)求拋物線的解析式及頂點D的坐標(biāo);
(2)在直線AC上方的拋物線上存在一點P,使△PAC的面積最大,請直接寫出P點坐標(biāo)及△PAC面積的最大值;
(3)在y軸上是否存在一點G,使得GD+GB的值最小?若存在,求出點G的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場試銷一種成本為60元/件的T恤,規(guī)定試銷期間單價不低于成本單價,又獲利不得高于40%,經(jīng)試銷發(fā)現(xiàn),銷售量y(件)與銷售單價x(元/件)符合一次函數(shù)y=kx+b,且x=70時,y=50;x=80時,y=40;
(1)求出一次函數(shù)y=kx+b的解析式
(2)若該商場獲得利潤為w元,試寫出利潤w與銷售單價x之間的關(guān)系式,銷售單價定為多少時,商場可獲得最大利潤,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A(﹣4,n),B(2,﹣2)是一次函數(shù)y=kx+b和反比例函數(shù)y=的圖象的兩個交點.
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)直接寫出圖中△OAB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:已知在等邊三角形ABC中,點D、E分別是AB、BC延長線上的點,且BD=CE,直線CD與AE相交于點F.
(1)求證:DC=AE;
(2)求證:AD2=DCDF.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com