【題目】如圖,已知二次函數(shù)的圖象與y軸交于點A(0,4),與x軸交于點B,C,點C坐標為(8,0),連接AB,AC.
(1)請直接寫出二次函數(shù)的解析式.
(2)判斷△ABC的形狀,并說明理由.
(3)若點N在x軸上運動,當以點A,N,C為頂點的三角形是等腰三角形時,請寫出此時點N的坐標.
【答案】(1);(2)直角三角形,證明見解析;(3)(3,0)或(-8,0)或(,0)或(,0)
【解析】
(1)根據(jù)待定系數(shù)法即可求得;
(2)根據(jù)拋物線的解析式求得B的坐標,然后根據(jù)勾股定理分別求得AB2=20,AC2=80,BC=10然后根據(jù)勾股定理的逆定理即可證得△ABC是直角三角形
(3)分別以A.C兩點為圓心,AC長為半徑畫弧,與m軸交于三個點,由AC的垂直平分線與c軸交于一個點,即可求得點N的坐標
(1)∵二次函數(shù)的圖象與y軸交于點A(0,4),與x軸交于點B.C,點C坐標(8,0),
∴
解得
∴拋物線表達式:
△ABC是直角三角形.
令y=0,則
解得x1=8,x2=-2,
∴點B的坐標為(-2,0),
由已知可得,
在Rt△ABO中
AB2=BO2+AO2=22+42=20,
在Rt△AOC中
AC2=AO2+CO2=42+82=80,
又∴BC=OB+OC=2+8=10,
∴在△ABC中
AB2+AC2=20+80=102=BC2
∴△ABC是直角三角形
(3)∵A(0,4),C(8,0),
AC==4,
①以A為圓心,以AC長為半徑作圓,交軸于N,此時N的坐標為(-8,0),
②以C為圓心,以AC長為半徑作圓,交x軸于N,此時N的坐標為(,0)或(,0)
③作AC的垂直平分線,交g軸于N,此時N的坐標為(3,0),
綜上,若點N在軸上運動,當以點A、N、C為頂點的三角形是等腰三角形時,點N的坐標分別為(-8,0)、(,0)、(3,0)、,0)
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在半⊙O中,AB是直徑,點D是⊙O上一點,點C是的中點,CE⊥AB于點E,過點D的切線交EC的延長線于點G,連接AD,分別交CE,CB于點P,Q,連接AC,關于下列結論:①∠BAD=∠ABC;②GP=GD;③點P是△ACQ的外心;④AC2=CQCB,其中結論正確的是____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工廠現(xiàn)有甲種原料360千克,乙種原料290千克,計劃利用這兩種原料生產(chǎn)A、B兩種產(chǎn)品共50件,已知生產(chǎn)一件A種產(chǎn)品用甲種原料9千克,乙種原料3千克,可獲利700元;生產(chǎn)一件B種產(chǎn)品用甲種原料4千克,乙種原料10千克,可獲利1200元.
(1)按要求安排A、B兩種產(chǎn)品的生產(chǎn)件數(shù),有哪幾種方案?請你設計出來;
(2)設生產(chǎn)A、B兩種產(chǎn)品總利潤為y元,其中一種產(chǎn)品生產(chǎn)件數(shù)為x件,試寫出y與x之間的函數(shù)關系式,并利用函數(shù)的性質(zhì)說明那種方案獲利最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax+bx+c的圖象如圖所示,下列結論:①abc>0;②b<a+c;③4a+2b+c>0;④a+b+c>m(am+b)+c(m≠1的實數(shù)),其中正確的結論有 ( )
A.個B.個C.個D.個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD與正方形A1B1C1D1關于某點中心對稱,已知A, D1,D三點的坐標分別是(0,4),(0,3),(0,2).
(1)對稱中心的坐標;
(2)寫出頂點B, C, B1 , C1的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠A=90°,AB=6,AC=8,D為AC中點,E為AB上的動點,將ED繞點D逆時針旋轉90°得到FD,連CF,則線段CF的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線y=x+4交x軸于點A,交y軸于點B,拋物線y=﹣x2+bx+c經(jīng)過點A、B.
(1)求拋物線解析式;
(2)點C(m,0)是x軸上異于A、O點的一點,過點C作x軸的垂線交AB于點D,交拋物線于點E.
①當點E在直線AB上方的拋物線上時,連接AE、BE,求S△ABE的最大值;
②當DE=AD時,求m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形網(wǎng)格中,四邊形TABC的頂點坐標分別為T(1,1),A(2,3),B(3,3),C(4,2).
(1)以點T(1,1)為位似中心,在位似中心的同側將四邊形TABC放大為原來的2倍,放大后點A,B,C的對應點分別為A′,B′,C′畫出四邊形TA′B′C′;
(2)寫出點A′,B′,C′的坐標:
A′ ,B′ ,C′ ;
(3)在(1)中,若D(a,b)為線段AC上任一點,則變化后點D的對應點D′的坐標為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖△ABC≌△DEC,公共頂點為C,B在DE上,則有結論①∠ACD=∠BCE=∠ABD;②∠DAC+∠DBC=180°;③△ADC∽△BEC;④CD⊥AB,其中成立的是( 。
A.①②③B.只有②④C.只有①和②D.①②③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com