已知:如圖(1),△OAB是邊長為2的等邊三角形,0A在x軸上,點B在第一象限內(nèi);△OCA是一個等腰三角形,OC=AC,頂點C在第四象限,∠C=120°.現(xiàn)有兩動點P、Q分別從A、O兩點同時出發(fā),點Q以每秒1個單位的速度沿OC向點C運動,點P以每秒3個單位的速度沿A→O→B運動,當(dāng)其中一個點到達終點時,另一個點也隨即停止.
1.求在運動過程中形成的△OPQ的面積S與運動的時間t之間的函數(shù)關(guān)系,并寫出自變量t的取值范圍;
2.在OA上(點O、A除外)存在點D,使得△OCD為等腰三角形,請直接寫出所有符合條件的點D的坐標(biāo);
3.如圖(2),現(xiàn)有∠MCN=60°,其兩邊分別與OB、AB交于點M、N,連接MN.將∠MCN繞著C點旋轉(zhuǎn)(0°<旋轉(zhuǎn)角<60°),使得M、N始終在邊OB和邊AB上.試判斷在這一過程中,△BMN的周長是否發(fā)生變化?若沒有變化,請求出其周長;若發(fā)生變化,請說明理由.
1.過點作于點.(如圖①)
∵,,∴.
∵,, ∴.
在Rt中,
當(dāng)時,,,;
過點作于點.(如圖①)
在Rt中,∵,∴,
∴.
即 .………………………………………2分
2.當(dāng)時,(如圖②)
,.
∵,,∴.
∴.
即.
故當(dāng)時,,當(dāng)時,……………4分
或 …………………6分
3.的周長不發(fā)生變化.
延長至點,使,連結(jié).(如圖③)
∵,∴≌.
∴, …………………7分
∴.
∴. 又∵.
∴≌.∴ ……………………………………9分
∴.
∴的周長不變,其周長為4 ……………………………………10分
【解析】(1)由于點Q從點O運動到點C需要 秒,點P從點A→O→B需要 秒,所以分兩種情況討論:①0<t< ;② ≤t<.針對每一種情況,根據(jù)P點所在的位置,由三角形的面積公式得出△OPQ的面積S與運動的時間t之間的函數(shù)關(guān)系,并且得出自變量t的取值范圍
(2)如果△OCD為等腰三角形,那么分D在OA邊或者OB邊上兩種情形.每一種情形,都有可能O為頂點,C為頂點,D為頂點,分別討論,得出結(jié)果;
(3)如果延長BA至點F,使AF=OM,連接CF,則由SAS可證△MOC≌△FAC,得出MC=CF,再由SAS證出△MCN≌△FCN,得出MN=NF,那么△BMN的周長=BA+BO=4.
科目:初中數(shù)學(xué) 來源: 題型:
3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
| ||
3 |
2
| ||
3 |
3 |
OA |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com