【題目】如圖,點(diǎn)D在AB上,點(diǎn)E在AC上,AB=AC,∠B=∠C.
(1)求證:BD=CE;
(2)若BE、CD交于點(diǎn)F,求證:△BDF≌△CEF;
(3)在(2)的條件下連接AF,求證:AF平分∠BAC.
【答案】(1)見(jiàn)解析;(2)見(jiàn)解析;(3)見(jiàn)解析
【解析】
(1)要證BD=CE只要證明AD=AE即可,而證明△ABE≌△ACD,則可得AD=AE.
(2)由BD=CE,∠B=∠C,∠DFB=∠EFC,易證△BDF≌△CEF;
(3)要證AF平分∠BAC,只要證△ABF≌△ACF即可.
證明:(1)在△ABE和△ACD中,
,
∴△ABE≌△ACD(ASA),
∴AD=AE,
∵AB=AC,
∴BD=CE;
(2)在△BDF和△CEF中,
,
∴△BDF≌△CEF(AAS);
(3)連接AF,如圖,
∵△BDF≌△CEF,
∴BF=CF,
在△ABF和△ACF中,
,
∴△ABF≌△ACF(SAS),
∴∠BAF=∠CAF,
∴AF平分∠BAC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A的坐標(biāo)為(0,1),點(diǎn)B是x軸正半軸上的一動(dòng)點(diǎn),以AB為邊作等腰Rt△ABC,使∠BAC=90°,設(shè)點(diǎn)B的橫坐標(biāo)為x,設(shè)點(diǎn)C的縱坐標(biāo)為y,能表示y與x的函數(shù)關(guān)系的圖象大致是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列材料解決問(wèn)題:
材料:古希臘著名數(shù)學(xué)家 畢達(dá)哥拉斯發(fā)現(xiàn)把數(shù)1,3,6,10,15,21…這些數(shù)量的(石子),都可以排成三角形,則稱像這樣的數(shù)為三角形數(shù).
把數(shù) 1,3,6,10,15,21…換一種方式排列,即
1=1
1+2=3
1+2+3=6
1+2+3+4=10
1+2+3+4+5=15
…
從上面的排列方式看,把1,3,6,10,15,…叫做三角形數(shù)“名副其實(shí)”.
(1)設(shè)第一個(gè)三角形數(shù)為a1=1,第二個(gè)三角形數(shù)為a2=3,第三個(gè)三角形數(shù)為a3=6,請(qǐng)直接寫出第n個(gè)三角形數(shù)為an的表達(dá)式(其中n為正整數(shù)).
(2)根據(jù)(1)的結(jié)論判斷66是三角形數(shù)嗎?若是請(qǐng)說(shuō)出66是第幾個(gè)三角形數(shù)?若不是請(qǐng)說(shuō)明理由.
(3)根據(jù)(1)的結(jié)論判斷所有三角形數(shù)的倒數(shù)之和T與2的大小關(guān)系并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,中,,是上一點(diǎn),于點(diǎn),是的中點(diǎn),于點(diǎn),與交于點(diǎn),若,平分,連結(jié),.
(1)求證:;
(2)求證:.
(3)若,判定四邊形是否為菱形,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,AE平分∠BAD,交BC于點(diǎn)E,BF平分∠ABC,交AD于點(diǎn)F,AE與BF交于點(diǎn)P,連接EF,PD.
(1)求證:四邊形ABEF是菱形;
(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖1,在平面直角坐標(biāo)系中,點(diǎn)A,B,E分別是x軸和y軸上的任意點(diǎn). BD是∠ABE的平分線,BD的反向延長(zhǎng)線與∠OAB的平分線交于點(diǎn)C.
探究: (1)求∠C的度數(shù).
發(fā)現(xiàn): (2)當(dāng)點(diǎn)A,點(diǎn)B分別在x軸和y軸的正半軸上移動(dòng)時(shí),∠C的大小是否發(fā)生變化?若不變,請(qǐng)直接寫出結(jié)論;若發(fā)生變化,請(qǐng)求出∠C的變化范圍.
應(yīng)用:(3)如圖2在五邊形ABCDE中,∠A+∠B+∠E=310°,CF平分∠DCB,CF的反向延長(zhǎng)線與∠EDC外角的平分線相交于點(diǎn)P,求∠P的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某校學(xué)生對(duì)A《最強(qiáng)大腦》、B《朗讀者》、C《中國(guó)詩(shī)詞大會(huì)》、D《出彩中國(guó)人》四個(gè)電視節(jié)目的喜愛(ài)情況,隨機(jī)抽取了m學(xué)生進(jìn)行調(diào)查統(tǒng)計(jì)(要求每名學(xué)生選出并且只能選出一個(gè)自己最喜愛(ài)的節(jié)目),將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖(如圖1和圖2):
根據(jù)統(tǒng)計(jì)圖提供的信息,回答下列問(wèn)題;
(1)m= ,n= ;
(2)扇形統(tǒng)計(jì)圖中,喜愛(ài)《最強(qiáng)大腦》節(jié)目所對(duì)應(yīng)的扇形的圓心角度數(shù)是 度.
(3)根據(jù)以上信息直接在答題卡中補(bǔ)全條形統(tǒng)計(jì)圖;
(4)根據(jù)抽樣調(diào)查結(jié)果,請(qǐng)你估計(jì)該校6000名學(xué)生中有多少學(xué)生最喜歡《中國(guó)詩(shī)詞大會(huì)》節(jié)目.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】探究學(xué)習(xí):
(1)感知與填空
如圖,直線.求證:.
閱讀下面的解答過(guò)程,并填上適當(dāng)?shù)睦碛桑?/span>
解:延長(zhǎng)交于,
∵(已知),∴( )
∵( ),
∴(等量代換)
(2)應(yīng)用與拓展
如圖,直線.若,,,則______度.
(3)方法與實(shí)踐
如圖,直線.請(qǐng)?zhí)骄?/span>,和之間有怎樣的關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】解不等式組
請(qǐng)結(jié)合題意填空,完成本題的解答.
(1)解不等式①,得 ;
(2)解不等式②,得 ;
(3)把不等式①和②的解集在數(shù)軸上表示出來(lái):
(4)原不等式維的解集為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com