如圖,直角梯形紙片ABCD中,AD//BC,∠A=90º,∠C=30º.折疊紙片使BC經(jīng)過點(diǎn)D,點(diǎn)C落在點(diǎn)E處,BF是折痕,且BF=CF=8.
(1)求∠BDF的度數(shù);
(2)求AB的長(zhǎng).
略解:(1)∠BDF=90º;(2)AB=BD×sin60°=6.
(1)∵BF=CF=8,
∴∠FBC=∠C=30°,
∵折疊紙片使BC經(jīng)過點(diǎn)D,點(diǎn)C落在點(diǎn)E處,BF是折痕,
∴∠EBF=∠CBF=30°,
∴∠EBC=60°,
∴∠BDF=90°;
(2)∵∠EBC=60°
∴∠ADB=60°,
∵BF=CF=8.
∴BD=BF×sin60°=4
∴在Rt△BAD中,
AB=BD×sin60°=6
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

(2011廣西梧州,4,3分)若一個(gè)菱形的一條邊長(zhǎng)為4cm,則這個(gè)菱形的周長(zhǎng)為
A.20cmB.18cmC.16cmD.12cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

(2011?福州)如圖,直角梯形ABCD中,AD∥BC,∠C=90°,則∠A+∠B+∠C=   度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(2011•畢節(jié)地區(qū))已知梯形ABCD中,AD∥BC,AB=AD(如圖所示),∠BAD的平分線AE交BC于點(diǎn)E,連接DE.
(1)在下圖中,用尺規(guī)作∠BAD的平分線AE(保留作圖痕跡不寫作法),并證明四邊形ABED是菱形.
(2)若∠ABC=60°,EC=2BE.求證:ED⊥DC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(2011•重慶)如圖,矩形ABCD中,AB=6,BC=2,點(diǎn)O是AB的中點(diǎn),點(diǎn)P在AB的延長(zhǎng)線上,且BP=3.一動(dòng)點(diǎn)E從O點(diǎn)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿OA勻速運(yùn)動(dòng),到達(dá)A點(diǎn)后,立即以原速度沿AO返回;另一動(dòng)點(diǎn)F從P點(diǎn)發(fā)發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿射線PA勻速運(yùn)動(dòng),點(diǎn)E、F同時(shí)出發(fā),當(dāng)兩點(diǎn)相遇時(shí)停止運(yùn)動(dòng),在點(diǎn)E、F的運(yùn)動(dòng)過程中,以EF為邊作等邊△EFG,使△EFG和矩形ABCD在射線PA的同側(cè).設(shè)運(yùn)動(dòng)的時(shí)間為t秒(t≥0).
(1)當(dāng)?shù)冗叀鱁FG的邊FG恰好經(jīng)過點(diǎn)C時(shí),求運(yùn)動(dòng)時(shí)間t的值;
(2)在整個(gè)運(yùn)動(dòng)過程中,設(shè)等邊△EFG和矩形ABCD重疊部分的面積為S,請(qǐng)直接寫出S與t之間的函數(shù)關(guān)系式和相應(yīng)的自變量t的取值范圍;
(3)設(shè)EG與矩形ABCD的對(duì)角線AC的交點(diǎn)為H,是否存在這樣的t,使△AOH是等腰三角形?若存大,求出對(duì)應(yīng)的t的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,已知正方形ABCD的邊長(zhǎng)為12cm,ECD邊上一點(diǎn),DE=5cm.以點(diǎn)A
為中心,將△ADE按順時(shí)針方向旋轉(zhuǎn)得△ABF,則點(diǎn)E所經(jīng)過的路徑長(zhǎng)為    cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,是平行四邊形的對(duì)角線上的點(diǎn),,請(qǐng)你猜想:線段與線段有怎樣的關(guān)系?并對(duì)你的猜想加以證明。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(9分)如圖,在梯形ABCD中,ADBC,延長(zhǎng)CB到點(diǎn)E,使BE=AD,連接DEAB于點(diǎn)M.
(1)求證:△AMD≌△BME;
(2)若NCD的中點(diǎn),且MN=5,BE=2,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

圖,正方形中,的中點(diǎn),,交于點(diǎn),交于點(diǎn),連接、。有如下結(jié)論:①;②;③;④;⑤。其中正確的結(jié)論的個(gè)數(shù)為( )
A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案