【題目】如圖,三個正比例函數(shù)的圖象分別對應(yīng)表達式:①y=ax,②y=bx,③y=cx,將a,b,c從小到大排列并用“<”連接為

【答案】a<c<b
【解析】解:根據(jù)三個函數(shù)圖象所在象限可得a<0,b>0,c>0,
再根據(jù)直線越陡,|k|越大,則b>c.
則b>c>a,
所以答案是:a<c<b.
【考點精析】利用一次函數(shù)的性質(zhì)和一次函數(shù)的圖象和性質(zhì)對題目進行判斷即可得到答案,需要熟知一般地,一次函數(shù)y=kx+b有下列性質(zhì):(1)當(dāng)k>0時,y隨x的增大而增大(2)當(dāng)k<0時,y隨x的增大而減;一次函數(shù)是直線,圖像經(jīng)過仨象限;正比例函數(shù)更簡單,經(jīng)過原點一直線;兩個系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負來左下展,變化規(guī)律正相反;k的絕對值越大,線離橫軸就越遠.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小麗蕩秋千,秋千鏈子的長OA為2.5米,秋千向兩邊擺動的角度相同,擺動的水平距離AB為3米,則秋千擺至最高位置時與最低價位置時的高度之差(即CD)為米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠ACB=90°,∠A=30°,AB=16.點P是斜邊AB上一點.過點P作PQ⊥AB,垂足為P,交邊AC(或邊CB)于點Q,設(shè)AP=x,△APQ的面積為y,則y與x之間的函數(shù)圖象大致為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰梯形ABCD中,已知AD∥BC,AB=DC,AC與BD交于點O,延長BC到E,使得CE=AD,連接DE.
(1)求證:BD=DE.
(2)若AC⊥BD,AD=3,SABCD=16,求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰梯形ABCD中,已知AD∥BC,AB=DC,AC與BD交于點O,延長BC到E,使得CE=AD,連接DE.
(1)求證:BD=DE.
(2)若AC⊥BD,AD=3,SABCD=16,求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在信宜市某“三華李”種植基地有A、B兩個品種的樹苗出售,已知A種比B種每株多2元,買1株A種樹苗和2株B種樹苗共需20元.
(1)問A、B兩種樹苗每株分別是多少元?
(2)為擴大種植,某農(nóng)戶準(zhǔn)備購買A、B兩種樹苗共360株,且A種樹苗數(shù)量不少于B種數(shù)量的一半,請求出費用最省的購買方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在信宜市某“三華李”種植基地有A、B兩個品種的樹苗出售,已知A種比B種每株多2元,買1株A種樹苗和2株B種樹苗共需20元.
(1)問A、B兩種樹苗每株分別是多少元?
(2)為擴大種植,某農(nóng)戶準(zhǔn)備購買A、B兩種樹苗共360株,且A種樹苗數(shù)量不少于B種數(shù)量的一半,請求出費用最省的購買方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函數(shù)y= 在第一象限的圖象經(jīng)過點B.若OA2﹣AB2=12,則k的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解同學(xué)們每月零花錢的數(shù)額,校園小記者隨機調(diào)查了本校部分同學(xué),根據(jù)調(diào)查結(jié)果,繪制出了如下兩個尚不完整的統(tǒng)計圖表. 調(diào)查結(jié)果統(tǒng)計表

組別

分組(單位:元)

人數(shù)

A

0≤x<30

4

B

30≤x<60

16

C

60≤x<90

a

D

90≤x<120

b

E

x≥120

2


請根據(jù)以上圖表,解答下列問題:
(1)填空:這次被調(diào)查的同學(xué)共有人,a+b= , m=;
(2)求扇形統(tǒng)計圖中扇形C的圓心角度數(shù);
(3)該校共有學(xué)生1000人,請估計每月零花錢的數(shù)額x在60≤x<120范圍的人數(shù).

查看答案和解析>>

同步練習(xí)冊答案