【題目】已知△ABC中,AB=17cmAC=10cm,邊上的高AD=8cm,則邊的長為(

A.B.C.D.

【答案】B

【解析】

高線AD可能在三角形的內(nèi)部也可能在三角形的外部,分兩種情況進行討論,分別依據(jù)勾股定理即可求解.

解:分兩種情況:

①如圖

RtABD中,∠ADB=90°,由勾股定理得,AB2=AD2+BD2

172=82+BD2,解得BD=15cm,

RtACD中,∠ADC=90°,由勾股定理得,AC2=AD2+CD2

102=82+CD2,解得CD=6cm,

BC=BD+CD=15+6=21cm

②如圖

由勾股定理求得BD=15cm,CD=6cm, BC=BD-CD=15-6=9cm.

BC的長為21cm9cm.

故選B

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖1,等腰三角形紙片,AB=AC,BAC=30°,按圖2將紙片沿DE折疊,使得點A與點B重合,此時∠DBC= ;

2)在(1)的條件下,將DEB沿直線BD折疊,點E恰好落在線段DC上的點E處,如圖3,此時∠EBC= ;

3)若另取一張等腰三角形紙片ABC,AB=AC,沿直線DE折疊(點D,E分別為折痕與直線AC,AB的交點),使得點A與點B重合,再將所得圖形沿直線BD折疊,使得E落在點E的位置,直線BE與直線AC交于點M.設∠BAC=m°m90°)畫出折疊后的圖形,并直接寫出對應的∠MBC的大。ㄓ煤m的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,函數(shù)y=(k>0,x>0)的圖象經(jīng)過菱形OACD的頂點D和邊AC的中點E,若菱形OACD的邊長為3,則k的值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點A和點B(0,﹣1),拋物線y=x2+bx+c經(jīng)過點B,與直線l的另一個交點為C(4,n).

(1)求n的值和拋物線的解析式;

(2)點D在拋物線上,DEy軸交直線l于點E,點F在直線l上,且四邊形DFEG為矩形(如圖2),設點D的橫坐標為t(0t4),矩形DFEG的周長為p,求p與t的函數(shù)關系式以及p的最大值;

(3)將AOB繞平面內(nèi)某點M旋轉(zhuǎn)90°或180°,得到A1O1B1,點A、O、B的對應點分別是點A1、O1、B1.若A1O1B1的兩個頂點恰好落在拋物線上,那么我們就稱這樣的點為“落點”,請直接寫出“落點”的個數(shù)和旋轉(zhuǎn)180°時點A1的橫坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△AEC△DFB中,∠E∠F,點AB,C,D在同一直線上,有如下三個關系式:①AE∥DF,②ABCD,③CEBF.

(1)請用其中兩個關系式作為條件,另一個作為結(jié)論,寫出你認為正確的所有命題(用序號寫出命題書寫形式:如果,,那么”)

(2)選擇(1)中你寫出的一個命題,說明它正確的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠ACB=90°,AC=BC,BECEADCE,AD=4,BE=1.

1)求證:△ADC≌△CEB

2)求的長。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一塊直角三角尺形狀的木板余料,木工師傅要在此余料上鋸出一塊圓形的木板制作凳面,要想使鋸出的凳面的面積最大.

(1)請你試著用直尺和圓規(guī)畫出此圓(要求尺規(guī)作圖,保留作圖痕跡,不寫作法).

(2)若此Rt△ABC的直角邊分別為30cm40cm,試求此圓凳面的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形網(wǎng)格中,每個小正方形的邊長都是一個單位長度,在平面直角坐標系內(nèi),△ABC的三個頂點坐標分別為A(1,4),B(1,1),C(3,1).

(1)畫出△ABC關于x軸對稱的△A1B1C1;

(2)畫出△ABC繞點O逆時針旋轉(zhuǎn)90°后的△A2B2C2;

(3)在(2)的條件下,求線段BC掃過的面積(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,∠B80°,∠C40°,

1)尺規(guī)作圖:作AC的垂直平分線,交AC于點D,交BC于點E

2)連接AE,求證:ABAE.

查看答案和解析>>

同步練習冊答案