【題目】如圖1,拋物線y=-x2+bx+c的頂點(diǎn)為Q,與x軸交于A(-1,0)、B(5,0)兩點(diǎn),與y軸交于點(diǎn)C.
(1)求拋物線的解析式及其頂點(diǎn)Q的坐標(biāo);
(2)在該拋物線的對(duì)稱軸上求一點(diǎn)P,使得△PAC的周長(zhǎng)最小,請(qǐng)?jiān)趫D中畫出點(diǎn)P的位置,并求點(diǎn)P的坐標(biāo);
(3)如圖2,若點(diǎn)D是第一象限拋物線上的一個(gè)動(dòng)點(diǎn),過(guò)D作DE⊥x軸,垂足為E.
①有一個(gè)同學(xué)說(shuō):“在第一象限拋物線上的所有點(diǎn)中,拋物線的頂點(diǎn)Q與x軸相距最遠(yuǎn),所以當(dāng)點(diǎn)D運(yùn)動(dòng)至點(diǎn)Q時(shí),折線D-E-O的長(zhǎng)度最長(zhǎng)”,這個(gè)同學(xué)的說(shuō)法正確嗎?請(qǐng)說(shuō)明理由.
②若DE與直線BC交于點(diǎn)F.試探究:四邊形DCEB能否為平行四邊形?若能,請(qǐng)直接寫出點(diǎn)D的坐標(biāo);若不能,請(qǐng)簡(jiǎn)要說(shuō)明理由.
【答案】(1)y-(x-2)2+9,Q(2,9);(2)(2,3);作圖見解析;(3)①不正確,理由見解析;②不能,理由見解析.
【解析】
(1)將A(-1,0)、B(5,0)分別代入y=-x2+bx+c中即可確定b、c的值,然后配方后即可確定其頂點(diǎn)坐標(biāo);
(2)連接BC,交對(duì)稱軸于點(diǎn)P,連接AP、AC.求得C點(diǎn)的坐標(biāo)后然后確定直線BC的解析式,最后求得其與x=2與直線BC的交點(diǎn)坐標(biāo)即為點(diǎn)P的坐標(biāo);
(3)①設(shè)D(t,-t2+4t+5),設(shè)折線D-E-O的長(zhǎng)度為L,求得L的最大值后與當(dāng)點(diǎn)D與Q重合時(shí)L=9+2=11<相比較即可得到答案;
②假設(shè)四邊形DCEB為平行四邊形,則可得到EF=DF,CF=BF.然后根據(jù)DE∥y軸求得DF,得到DF>EF,這與EF=DF相矛盾,從而否定是平行四邊形.
解:(1)將A(-1,0)、B(5,0)分別代入y=-x2+bx+c中,得
,解得
∴y=-x2+4x+5.
∵y=-x2+4x+5=-(x-2)2+9,
∴Q(2,9).
(2)如圖1,連接BC,交對(duì)稱軸于點(diǎn)P,連接AP、AC.
∵AC長(zhǎng)為定值,∴要使△PAC的周長(zhǎng)最小,只需PA+PC最。
∵點(diǎn)A關(guān)于對(duì)稱軸x=2的對(duì)稱點(diǎn)是點(diǎn)B(5,0),拋物線y=-x2+4x+5與y軸交點(diǎn)C的坐標(biāo)為(0,5).
∴由幾何知識(shí)可知,PA+PC=PB+PC為最。
設(shè)直線BC的解析式為y=kx+5,將B(5,0)代入5k+5=0,得k=-1,
∴y=-x+5,
∴當(dāng)x=2時(shí),y=3,
∴點(diǎn)P的坐標(biāo)為(2,3).
(3)①這個(gè)同學(xué)的說(shuō)法不正確.
∵設(shè)D(t,-t2+4t+5),設(shè)折線D-E-O的長(zhǎng)度為L,則L=t2+4t+5+t=t2+5t+5=(t)2+,
∵a<0,
∴當(dāng)t=時(shí),L最大值=.
而當(dāng)點(diǎn)D與Q重合時(shí),L=9+2=11<,
∴該該同學(xué)的說(shuō)法不正確.
②四邊形DCEB不能為平行四邊形.
如圖2,若四邊形DCEB為平行四邊形,則EF=DF,CF=BF.
∵DE∥y軸,
∴,即OE=BE=2.5.
當(dāng)xF=2.5時(shí),yF=-2.5+5=2.5,即EF=2.5;
當(dāng)xD=2.5時(shí),yD=(2.52)2+9=8.75,即DE=8.75.
∴DF=DE-EF=8.75-2.5=6.25>2.5.即DF>EF,這與EF=DF相矛盾,
∴四邊形DCEB不能為平行四邊形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校數(shù)學(xué)綜合實(shí)踐小組的同學(xué)以“綠色出行”為主題,把某小區(qū)的居民對(duì)共享單車的了解和使用情況進(jìn)行了問(wèn)卷調(diào)查.在這次調(diào)查中,發(fā)現(xiàn)有20人對(duì)于共享單車不了解,使用共享單車的居民每天騎行路程不超過(guò)8千米,并將調(diào)查結(jié)果制作成統(tǒng)計(jì)圖,如下圖所示:
(1)本次調(diào)查人數(shù)共 人,使用過(guò)共享單車的有 人;
(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)如果這個(gè)小區(qū)大約有3000名居民,請(qǐng)估算出每天的騎行路程在2~4千米的有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線l與x軸,y軸分別交于A,B兩點(diǎn),且與反比例函數(shù)y=(x>0)的圖象交于點(diǎn)C,若S△AOB=S△BOC=1,則k=( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知矩形ABCD中,若AB=4,BC=2,點(diǎn)E為CD的中點(diǎn),F為AB上一點(diǎn),連接EF、DF,EF=,則DF=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的解析式y=ax2+bx+3與x軸交于A、B兩點(diǎn),點(diǎn)B的坐標(biāo)為(﹣1,0)拋物線與y軸正半軸交于點(diǎn)C,△ABC面積為6.
(1)如圖1,求此拋物線的解析式;
(2)P為第一象限拋物線上一動(dòng)點(diǎn),過(guò)P作PG⊥AC,垂足為點(diǎn)G,設(shè)點(diǎn)P的橫坐標(biāo)為t,線段PG的長(zhǎng)為d,求d與t之間的函數(shù)關(guān)系式,并直接寫出自變量t的取值范圍;
(3)如圖2,在(2)的條件下,過(guò)點(diǎn)B作CP的平行線交y軸上一點(diǎn)F,連接AF,在BF的延長(zhǎng)線上取點(diǎn)E,連接PE,若PE=AF,∠AFE+∠BEP=180°,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(是常數(shù))經(jīng)過(guò)點(diǎn).
()求該拋物線的解析式和頂點(diǎn)坐標(biāo).
()拋物線與軸另一交點(diǎn)為點(diǎn),與軸交于點(diǎn),平行于軸的直線與拋物線交于點(diǎn), ,與直線交于點(diǎn).
①求直線的解析式.
②若,結(jié)合函數(shù)的圖像,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)(教材呈現(xiàn))下圖是華師版九年級(jí)上冊(cè)數(shù)學(xué)教材第77頁(yè)的部分內(nèi)容.請(qǐng)根據(jù)教材提示,結(jié)合圖23.4.2,寫出完整的證明過(guò)程.
(2)(結(jié)論應(yīng)用)如圖,△ABC是等邊三角形,點(diǎn)D在邊AB上(點(diǎn)D與點(diǎn)A、B不重合),過(guò)點(diǎn)D作DE∥BC交AC于點(diǎn)E,連結(jié)BE,M、N、P分別為DE、BE、BC的中點(diǎn),順次連結(jié)M、N、P.
①求證:MN=PN;
②∠MNP的大小是.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某水果超市經(jīng)銷一種進(jìn)價(jià)為18元/kg的水果,根據(jù)以前的銷售經(jīng)驗(yàn),該種水果的最佳銷售期為20天,銷售人員整理出這種水果的銷售單價(jià)y(元/kg)與第x天(1≤x≤20)的函數(shù)圖象如圖所示,而第x天(1≤x≤20)的銷售量m(kg)是x的一次函數(shù),滿足下表:
x(天) | 1 | 2 | 3 | … |
m(kg) | 20 | 24 | 28 | … |
(1)請(qǐng)分別寫出銷售單價(jià)y(元/kg)與x(天)之間及銷售量m(kg)是x(天)的之間的函數(shù)關(guān)系式
(2)求在銷售的第幾天時(shí),當(dāng)天的利潤(rùn)最大,最大利潤(rùn)是多少?
(3)請(qǐng)求出試銷的20天中當(dāng)天的銷售利潤(rùn)不低于1680元的天數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年來(lái)某市大力發(fā)展綠色交通,構(gòu)建公共、綠色交通體系,將“共享單車”陸續(xù)放置在人口流量較大的地方,琪琪同學(xué)隨機(jī)調(diào)查了若干市民用“共享單車”的情況,將獲得的數(shù)據(jù)分成四類,:經(jīng)常使用;:偶爾使用;:了解但不使用;:不了解,并繪制了如下兩個(gè)不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)以上信息,解答下列問(wèn)題:
(1)這次被調(diào)查的總?cè)藬?shù)是 人,“:了解但不使用”的人數(shù)是 人,“:不了解”所占扇形統(tǒng)計(jì)圖的圓心角度數(shù)為 .
(2)某小區(qū)共有人,根據(jù)調(diào)查結(jié)果,估計(jì)使用過(guò)“共享單車”的大約有多少人?
(3)目前“共享單車”有黃色、藍(lán)色、綠色三種可選,某天小張和小李一起使用“共享單車”出行,求兩人騎同一種顏色單車的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com