【題目】⊙O的半徑為5,AB是⊙O的直徑,點C在⊙O上,點D在直線AB上.
(1)如圖(1),已知∠BCD=∠BAC,求證:CD是⊙O的切線;
(2)如圖(2),CD與⊙O交于另一點E.BD:DE:EC=2:3:5,求圓心O到直線CD的距離;
(3)若圖(2)中的點D是直線AB上的動點,點D在運動過程中,會出現(xiàn)C,D,E在三點中,其中一點是另外兩點連線的中點的情形,問這樣的情況出現(xiàn)幾次?

【答案】
(1)證明:如圖(1),連接OC,

∵OA=OC,

∴∠OAC=∠OCA,

又∵AB是⊙O的直徑,

∴∠ACB=90°,

又∵∠BCD=∠BAC=∠OCA,

∴∠BCD+∠OCB=90°,即OC⊥CD,

∴CD是⊙O的切線


(2)解:∵∠ADE=∠CDB,∠BCD=∠EAD,

∴△BCD∽△EAD,

,

,

又∵BD:DE:EC=2:3:5,⊙O的半徑為5,

∴BD=2,DE=3,EC=5,

如圖(2),連接OC、OE,則△OEC是等邊三角形,

作OF⊥CE于F,則EF= CE= ,∴OF= ,

∴圓心O到直線CD的距離是


(3)解:這樣的情形共有出現(xiàn)三次:

當(dāng)點D在⊙O外時,點E是CD中點,有以下兩種情形,如圖1、圖2;

當(dāng)點D在⊙O內(nèi)時,點D是CE中點,有以下一種情形,如圖3.


【解析】(1)連接OC,根據(jù)弦切角定理和圓的性質(zhì)可得到∠BCD=∠BAC=∠OCA,結(jié)合圓周角定理可求得∠OCD=90°,可證明CD是切線;(2)先證明△BCD∽△EAD,結(jié)合條件可求得BD=2,DE=3,EC=5,在△OBC中可求得O到CD的距離;(3)分點D在⊙O外和點D在⊙O內(nèi)兩種情況,當(dāng)D在⊙O外時又分D在A點左邊和D在B點右邊兩種情況,當(dāng)D在⊙O內(nèi)時只有一種,結(jié)合圖形可給出答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以AB為直徑的⊙O與弦CD相交于點E,且AC=2,AE= ,CE=1.則 的長是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:|﹣4|﹣22+ ﹣tan60°(說明:本題不允許使用計算器計算)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+c(a≠0)與x軸交于A(﹣1,0),B(3,0),與y軸交于C(0,3),頂點為D(1,4),對稱軸為DE.

(1)拋物線的解析式是;
(2)如圖(2),點P是AD上一個動點,P′是P關(guān)于DE的對稱點,連接PE,過P′作P′F∥PE交x軸于F.設(shè)S四邊形EPP′F=y,EF=x,求y關(guān)于x的函數(shù)關(guān)系式,并求y的最大值;
(3)在(1)中的拋物線上是否存在點Q,使△BCQ成為以BC為直角邊的直角三角形?若存在,求出Q的坐標(biāo);若不存在.請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是兩個全等的三角形,,.現(xiàn)將按如圖所示的方式疊放在一起,保持不動,運動,且滿足:點E在邊BC上運動(不與點B,C重合),且邊DE始終經(jīng)過點AEFAC交于點M .

(1)求證:∠BAE=MEC;

(2)當(dāng)EBC中點時,請求出MEMF的值;

(3)在的運動過程中,能否構(gòu)成等腰三角形?若能,請直接寫出所有符合條件的BE的長;若不能,則請說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠AOB=45°,點M,N在邊OA上,OM=3,ON=7,點P直線OB上的點,要使點P,M,N構(gòu)成等腰三角形的點P________個.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2+(2k+1)x+k2﹣2=0的兩根為x1和x2 , 且(x1﹣2)(x1﹣x2)=0,則k的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,∠ABC=90°,AB=BC,三角形的頂點在相互平行的三條直線、上,且,,之間的距離為2 , ,之間的距離為3 ,則AC2= _______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,ABC中,BE平分∠ABCAC邊于點E,過點EDEBCAB于點D

(1)求證:△BDE為等腰三角形;

(2)若點DAB中點,AB=6,求線段BC的長;

(3)在圖2條件下,若∠BAC=60°,動點P從點B出發(fā),以每秒1個單位的速度沿射線BE運動,請直接寫出圖3當(dāng)△ABP為等腰三角形時t的值.

查看答案和解析>>

同步練習(xí)冊答案