【題目】如圖,在⊙O中,點C在優(yōu)弧上,將沿BC折疊后剛好經(jīng)過AB的中點D,連接AC,CD.則下列結(jié)論中錯誤的是( )
①AC=CD;②AD=BD;③+=;④CD平分∠ACB
A.1B.2C.3D.4
科目:初中數(shù)學(xué) 來源: 題型:
【題目】國家規(guī)定,中、小學(xué)生每天在校體育活動時間不低于1h.為此,某區(qū)就“你每天在校體育活動時間是多少”的問題隨機(jī)調(diào)查了轄區(qū)內(nèi)300名初中學(xué)生.根據(jù)調(diào)查結(jié)果繪制成的統(tǒng)計圖如圖所示,其中A組為t<0.5h,B組為0.5h≤t<1h,C組為1h≤t<1.5h,D組為t≥1.5h.
請根據(jù)上述信息解答下列問題:
(1)本次調(diào)查數(shù)據(jù)的眾數(shù)落在 組內(nèi),中位數(shù)落在 組內(nèi);
(2)該轄區(qū)約有18000名初中學(xué)生,請你估計其中達(dá)到國家規(guī)定體育活動時間的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=mx2+nx﹣3(m≠0)與x軸交于A(﹣3,0),B(1,0)兩點,與y軸交于點C,直線y=﹣x與該拋物線交于E,F兩點.
(1)求點C坐標(biāo)及拋物線的解析式.
(2)P是直線EF下方拋物線上的一個動點,作PH⊥EF于點H,求PH的最大值.
(3)以點C為圓心,1為半徑作圓,⊙C上是否存在點D,使得△BCD是以CD為直角邊的直角三角形?若存在,直接寫出D點坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,BD是⊙O的直徑,AE⊥CD交CD的延長線于點E,DA平分∠BDE.
⑴求證:AE是⊙O的切線;
⑵若AE=4cm,CD=6cm,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,BC=6,點M是BC的中點.
(1)在AM上求作一點E,使△ADE∽△MAB(尺規(guī)作圖,不寫作法);
(2)在(1)的條件下,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在學(xué)習(xí)“圓的對稱性”時知道結(jié)論:垂直于弦的直徑一定平分這條弦,請嘗試解決問題:如圖,在Rt△ACB中,∠ACB=90°,圓O是△ACB的外接圓.點D是圓O上一點,過點D作DE⊥BC,垂足為E,且BD平分∠ABE,
(1)判斷直線ED與圓O的位置關(guān)系,并說明理由.
(2)若AC=12,BC=5,求線段BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=4,∠ADN=60°,點E是AD邊的中點,點M是AB邊上一動點(不與點A重合),延長ME交射線CD于點N.連接MD、AN,
(1)求證:四邊形AMDN是平行四邊形;
(2)填空:
①當(dāng)AM的值為_____時,四邊形AMON是矩形;
②當(dāng)AM的值為______時,四邊形AMDN是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,AD=6,E是AB邊的中點,F是線段BC上的動點,將△EBF沿EF所在直線折疊得到△EB′F,連接ED,則DE的長度是_____,B′D的最小值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,, 垂足為平分,交于點,交于點.
(1)若,求的長;
(2)過點作的垂線,垂足為,連接,試判斷四邊形的形狀,并說明原因.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com