【題目】如圖①,中,,點從點出發(fā)沿方向勻速運動,速度為1點是上位于點右側(cè)的動點,點是上的動點,在運動過程中始終保持,cm.過作交于,當點與點重合時點停止運動.設的而積為,點的運動時問為,與的函數(shù)關系如圖②所示:
(1)=_______,=_______;
(2)設四邊形的面積為,求的最大值;
(3)是否存在的值,使得以,,為頂點的三角形與相似?如果存在,求的值;如果不存在,說明理由.
【答案】(1)6,12;(2)時,有最大值16.(3)或
【解析】
(1)當t=4時,點E與C重合,此時AD=4,AC=AD+DE=4+2=6,故可求得AC=6;
由圖分析當t=0時,S=2.設M到AC的距離為h,所以DEh=2,所以h=2.易求得tan∠A=2,再在Rt中,解直角三角形可以求出AC的長.
(2) 四邊形的面積等于三角形MDE和三角形MNE的和,用含有t的式子表示出四邊形MDEN的面積,再求最值;
(3)兩個三角形中已有,如若再找到一對角相等,兩三角形相似,故需分情況進行討論:當或時,兩三角形相似.
解:(1)由圖可知:當t=4時,點E與C重合,此時AD=4,AC=AD+DE=4+2=6,故可求得AC=6;
當t=0時,S=2.設M到AC的距離為h,所以DEh=2,所以h=2.
∴tan∠A==2.
在Rt中,tan∠A==2.
∴BC=2AC=12.
(2)作于點,
∵,,∴,∴,
∵,
∴,
∵,,∴,
又∴,
∴,
∴四邊形是矩形,
∴,
∴
,
根據(jù)題意,,
∴時,有最大值16.
(3)假設存在的值,使得以,,為頂點的三角形與相似.
∵,∴.
①當時,,∴,∴,,.
②當時,,此時,
∵,∴,∴,
∴,(舍去)
∴或時,以,,為頂點的三角形與相似.
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,拋物線經(jīng)過點和點.
(1)求拋物線的解析式;
(2)為拋物線上的一個動點,點關于原點的對稱點為.當點落在該拋物線上時,求的值;
(3)是拋物線上一動點,連接,以為邊作圖示一側(cè)的正方形,隨著點的運動,正方形的大小與位置也隨之改變,當頂點或恰好落在軸上時,求對應的點坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,E是AD的中點,延長CE,BA交于點F,連接AC,DF.
(1)求證:四邊形ACDF是平行四邊形;
(2)當CF平分∠BCD時,寫出BC與CD的數(shù)量關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形中,平分,交于點,過點作,交的延長線于點,交的延長線于點,
(1)求證:;
(2)如圖,連接、,求證平分;
(3)如圖,連接交于點, 求的值。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一艘輪船在處測得燈塔在船的南偏東60°方向,輪船繼續(xù)向正東航行30海里后到達處,這時測得燈塔在船的南偏西75°方向,則燈塔離觀測點、的距離分別是( )
A.海里、15海里B.海里、15海里
C.海里、海里D.海里、海里
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為1的正方形中,對角線,相交于點,點,點分別是,的中點,交于點,連接,,,得到以下四個結(jié)論:①,②,③,④,其中正確的結(jié)論是________(填寫序號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綜合與實踐:
如圖1,將一個等腰直角三角尺的頂點放置在直線上,,,過點作于點,過點作于點.
觀察發(fā)現(xiàn):
(1)如圖1.當,兩點均在直線的上方時,
①猜測線段,與的數(shù)量關系,并說明理由;
②直接寫出線段,與的數(shù)量關系;
操作證明:
(2)將等腰直角三角尺繞著點逆時針旋轉(zhuǎn)至圖2位置時,線段,與又有怎樣的數(shù)量關系,請寫出你的猜想,并寫出證明過程;
拓廣探索:
(3)將等腰直角三用尺繞著點繼續(xù)旋轉(zhuǎn)至圖3位置時,與交于點,若,,請直接寫出的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,,tanA=3,∠ABC=45°,射線BD從與射線BA重合的位置開始,繞點B按順時針方向旋轉(zhuǎn),與射線BC重合時就停止旋轉(zhuǎn),射線BD與線段AC相交于點D,點M是線段BD的中點.
(1)求線段BC的長;
(2)①當點D與點A、點C不重合時,過點D作DE⊥AB于點E,DF⊥BC于點F,連接ME,MF,在射線BD旋轉(zhuǎn)的過程中,∠EMF的大小是否發(fā)生變化?若不變,求∠EMF的度數(shù);若變化,請說明理由.
②在①的條件下,連接EF,直接寫出△EFM面積的最小值______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com