【題目】如圖直線y1=-x+4,y2=x+b都與雙曲線y=交于點A(1,m),這兩條直線分別與x軸交于B,C兩點
(1)求k的值;
(2)直接寫出當(dāng)x>0時,不等式x+b>的解集;
(3)若點P在x軸上,連接AP,且AP把△ABC的面積分成1:2兩部分,求此時點P的坐標(biāo).
【答案】(1)k=3;(2)x>1;(3)P(-,0)或(,0).
【解析】
(1)求得A(1,3),把A(1,3)代入雙曲線y=,可求得k的值;
(2)依據(jù)A(1,3),可得當(dāng)x>0時,不等式x+b>的的解集為x>1;
(3)分兩種情況進(jìn)行討論,AP把△ABC的面積分成1:2兩部分,則CP=BC=,或BP=CP=BC=,即可得到OP=3-=,或OP=4-=,進(jìn)而得出點P的坐標(biāo).
解:(1)把A(1,m)代入y1=-x+4,可得m=-1+4=3,
∴A(1,3),
把A(1,3)代入雙曲線y=,可得k=1×3=3,
(2)∵A(1,3),
∴當(dāng)x>0時,不等式x+b>的解集為:x>1;
(3)y1=-x+4,令y=0,則x=4,
∴點B的坐標(biāo)為(4,0),
把A(1,3)代入y2=x+b,可得3=×1+b,
∴b=,
∴y2=x+,
令y=0,則x=-3,即C(-3,0),
∴BC=7,
∵AP把△ABC的面積分成1:2兩部分,
∴CP=BC=,或BP=BC=,
∴OP=3-=,或OP=4-=,
∴P(-,0)或(,0).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是正方形的邊的中點,點與關(guān)于對稱,的延長線與交于點,與的延長線交于點,點在的延長線上,作正方形,連接,記正方形,的面積分別為,,則下列結(jié)論錯誤的是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1)在正方形ABCD中,點E是CD邊上一動點,連接AE,作BF⊥AE,垂足為G交AD于F
(1)求證:AF=DE;
(2)連接DG,若DG平分∠EGF,如圖(2),求證:點E是CD中點;
(3)在(2)的條件下,連接CG,如圖(3),求證:CG=CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩個工程隊共同承擔(dān)一項筑路任務(wù),甲隊單獨施工完成此項任務(wù)比乙隊單獨施工完成此項任務(wù)多用10天,且甲隊單獨施工45天和乙隊單獨施工30天的工作量相同.
(1)甲、乙兩隊單獨完成此項任務(wù)各需多少天?
(2)若甲、乙兩隊共同工作了3天后,乙隊因設(shè)備檢修停止施工,由甲隊繼續(xù)施工,為了不影響工程進(jìn)度,甲隊的工作效率提高到原來的2倍,要使甲隊總的工作量不少于乙隊的工作量的2倍,那么甲隊至少再單獨施工多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形OABC為矩形,點A,C分別在x軸和y軸上,連接AC,點B的坐標(biāo)為(8,6),以A為圓心,任意長為半徑畫弧,分別交AC、AO于點M、N,再分別以M、N為圓心,大于MN長為半徑畫弧兩弧交于點Q,作射線AQ交y軸于點D,則點D的坐標(biāo)為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線經(jīng)過點A(-1,0),B(4,0),C(0,2)三點,點D與點C關(guān)于x軸對稱,點P是線段AB上的一個動點,設(shè)點P的坐標(biāo)為(m,0),過點P作x軸的垂線l交拋物線于點Q,交直線BD于點M.
(1)求該拋物線所表示的二次函數(shù)的表達(dá)式;
(2)在點P運動過程中,是否存在點Q,使得△BQM是直角三角形?若存在,求出點Q的坐標(biāo);若不存在,請說明理由;
(3)連接AC,將△AOC繞平面內(nèi)某點H順時針旋轉(zhuǎn)90°,得到△A1O1C1,點A、O、C的對應(yīng)點分別是點A、O1、C1、若△A1O1C1的兩個頂點恰好落在拋物線上,那么我們就稱這樣的點為“和諧點”,請直接寫出“和諧點”的個數(shù)和點A1的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的方程(m-1)x2+(m+1)x+3m-1=0,當(dāng)m_________時,是一元一次方程;當(dāng)m_________時,是一元二次方程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,點與點在同側(cè),,且,過點作交于點為的中點,連接.
(1)如圖1,當(dāng)時,線段與的數(shù)量關(guān)系是 ;
(2)如圖2,當(dāng)時,試探究線段與的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)如圖3,當(dāng)時,求的值.
圖1 圖2 圖3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于二次函數(shù)y=x2+mx+1,當(dāng)0<x≤2時的函數(shù)值總是非負(fù)數(shù),則實數(shù)m的取值范圍為( )
A. m≥﹣2 B. ﹣4≤m≤﹣2 C. m≥﹣4 D. m≤﹣4或m≥﹣2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com