【題目】如圖(1)在正方形ABCD中,點ECD邊上一動點,連接AE,作BFAE,垂足為GADF

1)求證:AFDE;

2)連接DG,若DG平分∠EGF,如圖(2),求證:點ECD中點;

3)在(2)的條件下,連接CG,如圖(3),求證:CGCD

【答案】1)見解析;(2)見解析;(3CGCD,見解析.

【解析】

(1)證明△BAF≌△ADE(ASA)即可解決問題.

(2)過點D作DM⊥GF,DN⊥GE,垂足分別為點M,N.想辦法證明AF=DF,即可解決問題.

(3)延長AE,BC交于點P,由(2)知DE=CD,利用直角三角形斜邊中線的性質(zhì),只要證明BC=CP即可.

(1)證明:如圖1中,

在正方形ABCD中,AB=AD,∠BAD=∠D=90o,

∴∠2+∠3=90°

又∵BF⊥AE,

∴∠AGB=90°

∴∠1+∠2=90°,

∴∠1=∠3

在△BAF與△ADE中,

∠1=∠3 BA=AD ∠BAF=∠D,

∴△BAF≌△ADE(ASA)

∴AF=DE.

(2)證明:過點D作DM⊥GF,DN⊥GE,垂足分別為點M,N.

由(1)得∠1=∠3,∠BGA=∠AND=90°,AB=AD

∴△BAG≌△ADN(AAS)

∴AG=DN,

又DG平分∠EGF,DM⊥GF,DN⊥GE,

∴DM=DN,

∴DM=AG,又∠AFG=∠DFM,∠AGF=∠DMF

∴△AFG≌△DFM(AAS),

∴AF=DF=DE=AD=CD,

即點E是CD的中點.

(3)延長AE,BC交于點P,由(2)知DE=CD,

∠ADE=∠ECP=90°,∠DEA=∠CEP,

∴△ADE≌△PCE(ASA)

∴AE=PE,

又CE∥AB,

∴BC=PC,

在Rt△BGP中,∵BC=PC,

∴CG=BP=BC,

∴CG=CD.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】立定跳遠是嘉興市體育中考的抽考項目之一,某校九年級(1),(2)班準備集體購買某品牌的立定跳遠訓練鞋.現(xiàn)了解到某網(wǎng)店正好有這種品牌訓練鞋的促銷活動,其購買的單價y(元/雙)與一次性購買的數(shù)量x(雙)之間滿足的函數(shù)關(guān)系如圖所示.

1)當10≤x60時,求y關(guān)于x的函數(shù)表達式;

2)九(1),(2)班共購買此品牌鞋子100雙,由于某種原因需分兩次購買,且一次購買數(shù)量多于25雙且少于60雙;

①若兩次購買鞋子共花費9200元,求第一次的購買數(shù)量;

②如何規(guī)劃兩次購買的方案,使所花費用最少,最少多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】四邊形ABCD、AEFG都是正方形,當正方形AEFG繞點A逆時針旋轉(zhuǎn)45°時,如圖,連接DG、BE,并延長BEDG于點H,且BHDGH,若AB=4,AE=時,則線段BH的長是( 。

A. B. 16C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC內(nèi)接于⊙O,CBG=A,CD為直徑,OCAB相交于點E,過點EEFBC,垂足為F,延長CDGB的延長線于點P,連接BD.

(1)求證:PG與⊙O相切;

(2)若=,求的值;

(3)在(2)的條件下,若⊙O的半徑為8,PD=OD,求OE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們知道,(k+12k2+2k+1,變形得:(k+12k22k+1,對上面的等式,依次令k1,2,3,得:

1個等式:22122×1+1

2個等式:32222×2+1

3個等式:42322×3+1

1)按規(guī)律,寫出第n個等式(用含n的等式表示):第n個等式   

2)記S11+2+3+…+n,將這n個等式兩邊分別相加,你能求出S1的公式嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,函數(shù)的圖象G與直線ly=﹣x+7交于A1a),B兩點.

1)求k的值;

2)記圖象G在點A,B之間的部分與線段AB圍成的區(qū)域(不含邊界)為W.點P在區(qū)域W內(nèi),若點P的橫縱坐標都為整數(shù),直接寫出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知O的直徑AE10cm,∠B=∠EAC,則AC的長為(  )

A. 5cm B. 5cm C. 5 cm D. 6cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖直線y1=-x+4,y2=x+b都與雙曲線y=交于點A1,m),這兩條直線分別與x軸交于BC兩點

1)求k的值;

2)直接寫出當x0時,不等式x+b的解集;

3)若點Px軸上,連接AP,且AP把△ABC的面積分成12兩部分,求此時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,平行四邊形ABOC的邊OBx軸上,過點C(3,4)的雙曲線與AB交于點D,且AC=2AD,則點D的坐標為_____

查看答案和解析>>

同步練習冊答案