【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,與x軸的一個交點坐標為(﹣1,0),其部分圖象如圖所示,下列結論:
①b2﹣4ac<0;
②方程ax2+bx+c=0的兩個根是x1=﹣1,x2=3;
③2a+b=0;
④當y>0時,x的取值范圍是﹣1<x<3;
⑤當x>0時,y隨x增大而減。
其中結論正確的個數(shù)是( 。
A.4個B.3個C.2個D.1個
【答案】B
【解析】
利用拋物線與x軸的交點個數(shù)可對①進行判斷;利用拋物線的對稱性得到拋物線與x軸的一個交點坐標為(3,0),則可對②進行判斷;由對稱軸方程得到b=﹣2a,則可對③進行判斷;根據(jù)拋物線在x軸上方所對應的自變量的范圍可對④進行判斷;根據(jù)二次函數(shù)的性質對⑤進行判斷.
函數(shù)圖象與x軸有2個交點,則b2﹣4ac>0,故①錯誤;
函數(shù)的對稱軸是x=1,則與x軸的另一個交點是(3,0),
則方程ax2+bx+c=0的兩個根是x1=﹣1,x2=3,故②正確;
函數(shù)的對稱軸是x=﹣=1,則2a+b=0成立,故③正確;
函數(shù)與x軸的交點是(﹣1,0)和(3,0)則當y>0時,x的取值范圍是﹣1<x<3,故④正確;
當x>1時,y隨x的增大而減小,則⑤錯誤.
故選:B.
科目:初中數(shù)學 來源: 題型:
【題目】當今,越來越多的青少年在觀看影片《流浪地球》后,更加喜歡同名科幻小說,該小說銷量也急劇上升.書店為滿足廣大顧客需求,訂購該科幻小說若干本,每本進價為20元.根據(jù)以往經(jīng)驗:當銷售單價是25元時,每天的銷售量是250本;銷售單價每上漲1元,每天的銷售量就減少10本,書店要求每本書的利潤不低于10元且不高于18元.
(1)直接寫出書店銷售該科幻小說時每天的銷售量(本)與銷售單價(元)之間的函數(shù)關系式及自變量的取值范圍.
(2)書店決定每銷售1本該科幻小說,就捐贈元給困難職工,每天扣除捐贈后可獲得最大利潤為1960元,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在x軸的正半軸上依次間隔相等的距離取點A1,A2,A3,A4,…,An,分別過這些點做x軸的垂線與反比例函數(shù)y=的圖象相交于點P1,P2,P3,P4,…Pn,再分別過P2,P3,P4,…Pn作P2B1⊥A1P1,P3B2⊥A2P2,P4B3⊥A3P3,…,PnBn﹣1⊥An﹣1Pn﹣1,垂足分別為B1,B2,B3,B4,…,Bn﹣1,連接P1P2,P2P3,P3P4,…,Pn﹣1Pn,得到一組Rt△P1B1P2,Rt△P2B2P3,Rt△P3B3P4,…,Rt△Pn﹣1Bn﹣1Pn,則Rt△Pn﹣1Bn﹣1Pn的面積為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,它與x軸的兩個交點的坐標分別為(﹣1,0),(3,0),且點P1(x1,y1)、P2(x2,y2)在此拋物線上.對于下列結論:①abc>0;②b2﹣4ac>0;③當x1<x2<0時,y1>y2;④當﹣1<x<3時,y<0.其中正確的是_____(填序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在所給格點圖中,畫出△ABC作下列變換后的三角形,并寫出所得到的三角形三個頂點的坐標.
(1)沿y軸正方向平移2個單位后得到△A1B1C1;
(2)關于y軸對稱后得到△A2B2C2.
(3)以點B為位似中心,放大到2倍后得到△A3B3C3.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一個不透明的口袋中裝有3個帶號碼的球,球號分別為2,3,4,這些球除號碼不同外其它均相同。甲、乙、兩同學玩摸球游戲,游戲規(guī)則如下:
先由甲同學從中隨機摸出一球,記下球號,并放回攪勻,再由乙同學從中隨機摸出一球,記下球號。將甲同學摸出的球號作為一個兩位數(shù)的十位上的數(shù),乙同學的作為個位上的數(shù)。若該兩位數(shù)能被4整除,則甲勝,否則乙勝.
問:這個游戲公平嗎?請說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為了解全校2000名學生的課外閱讀情況,在全校范圍內(nèi)隨機調查了50名學生,得到他們在某一天各自課外閱讀所用時間的數(shù)據(jù),將結果繪制成頻數(shù)分布直方圖(如圖所示).
(1)請分別計算這50名學生在這一天課外閱讀所用時間的眾數(shù)、中位數(shù)和平均數(shù);
(2)請你根據(jù)以上調查,估計全校學生中在這一天課外閱讀所用時間在1.0小時以上(含1.0小時)的有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,扇形OAB的半徑OA=3,圓心角∠AOB=90°,點C是弧AB上異于A、B的動點,過點C作CD⊥OA于點D,作CE⊥OB于點E,連結DE,點G、H在線段DE上,且DG=GH=HE
(1)求證:四邊形OGCH是平行四邊形;
(2)當點C在弧AB上運動時,在CD、CG、DG中,是否存在長度不變的線段?若存在,請求出該線段的長度;
(3)求證:是定值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,⊙A與y軸相切于原點O,平行于x軸的直線交⊙A于M、M兩點,若點M的坐標是(-4,-2),則點N的坐標為( )
A.(-1,-2) B.(1,2) C.(-1.5,-2) D.(1.5,-2)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com