【題目】如圖,將直角三角形ABC沿著斜邊AC的方向平移到△DEF的位置(A、D. C. F四點(diǎn)在同一條直線上).直角邊DE交BC于點(diǎn)G.如果BG=4,EF=12,△BEG的面積等于4,那么梯形ABGD的面積是( )
A.16B.20C.24D.28
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,,,.若動(dòng)點(diǎn)從點(diǎn)開始,沿的路徑運(yùn)動(dòng),且速度為每秒,設(shè)運(yùn)動(dòng)的時(shí)間為秒,當(dāng)______時(shí),為等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△OAB的直角邊OA在x軸上,頂點(diǎn)B的坐標(biāo)為(6,8),直線CD交AB于點(diǎn)D(6,3),交x軸于點(diǎn)C(12,0).
(1)求直線CD的函數(shù)表達(dá)式;
(2)動(dòng)點(diǎn)P在x軸上從點(diǎn)(﹣10,0)出發(fā),以每秒1個(gè)單位的速度向x軸正方向運(yùn)動(dòng),過點(diǎn)P作直線l垂直于x軸,設(shè)運(yùn)動(dòng)時(shí)間為t.
①點(diǎn)P在運(yùn)動(dòng)過程中,是否存在某個(gè)位置,使得∠PDA=∠B?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;
②請(qǐng)?zhí)剿鳟?dāng)t為何值時(shí),在直線l上存在點(diǎn)M,在直線CD上存在點(diǎn)Q,使得以OB為一邊,O,B,M,Q為頂點(diǎn)的四邊形為菱形,并求出此時(shí)t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AM∥CN,點(diǎn)B為平面內(nèi)一點(diǎn),AB⊥BC于B.
(1)如圖1,直接寫出∠A和∠C之間的數(shù)量關(guān)系___;
(2)如圖2,過點(diǎn)B作BD⊥AM于點(diǎn)D,求證:∠ABD=∠C;
(3)如圖3,在(2)問的條件下,點(diǎn)E. F在DM上,連接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)D,E分別在AC,AB上.
【1】(1) 已知,BD=CE,CD=BE,求證:AB=AC;
【2】(2) 分別將“BD=CE”記為①,“CD=BE” 記為②,“AB=AC”記為③.添加條件①、③,以②為結(jié)論構(gòu)成命題1,添加條件②、③以①為結(jié)論構(gòu)成命題2.命題1是命題2的 命題,命題2是
命題.(選擇“真”或“假”填入空格).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班要在一面墻上同時(shí)展示數(shù)張形狀、大小均相同的矩形繪畫作品,將這些作品排成一個(gè)矩形(作品不完全重合),現(xiàn)需要在每張作品的四個(gè)角落都釘上圖釘,如果作品有角落相鄰,那么相鄰的角落共享一枚圖釘(例如,用9枚圖釘將4張作品釘在墻上,如圖),若有34枚圖釘可供選用,則最多可以展示繪畫作品( )
A. 16張 B. 18張 C. 20張 D. 21張
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小敏思考解決如下問題:
原題:如圖1,點(diǎn),分別在菱形的邊,上,,求證:.
(1)小敏進(jìn)行探索,若將點(diǎn),的位置特殊化:把繞點(diǎn)旋轉(zhuǎn)得到,使,點(diǎn),分別在邊,上,如圖2,此時(shí)她證明了.請(qǐng)你證明.
(2)受以上(1)的啟發(fā),在原題中,添加輔助線:如圖3,作,,垂足分別為,.請(qǐng)你繼續(xù)完成原題的證明.
(3)如果在原題中添加條件:,,如圖1.請(qǐng)你編制一個(gè)計(jì)算題(不標(biāo)注新的字母),并直接給出答案(根據(jù)編出的問題層次,給不同的得分).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列條件:①∠A+∠B=∠C,②∠C=90°,③AC:BC:AB=3:4:5,④∠A:∠B:∠C=3:4:5.⑤a2=(b+c)(b﹣c)中,能確定△ABC是直角三角形的有( )
A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD的邊AB上任取一點(diǎn)E,作EF⊥AB交BD于點(diǎn)F,取FD的中點(diǎn)G,連結(jié)EG、CG.
(1)如圖1,求證EG=CG且EG⊥CG.
(2)如圖2將△BEF繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90度,求線段EG和CG有怎么樣的關(guān)系,并證明你的結(jié)論.
(3)如圖3,將△BEF繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)180度,線段EG和CG有怎么樣的關(guān)系?寫出你的猜想,不需證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com