【題目】如圖,∠BOC=9°,點AOB上,且OA=1,按下列要求畫圖:以A為圓心,1為半徑向右畫弧交OC于點A1,得第1條線段AA1;再以A1為圓心,1為半徑向右畫弧交OB于點A2,得第2條線段A1A2;再以A2為圓心,1為半徑向右畫弧交OC于點A3,得第3條線段A2A3…這樣畫下去,直到得第n條線段,之后就不能再畫出符合要求的線段了,則n=( 。

A. 10B. 9C. 8D. 7

【答案】B

【解析】

根據(jù)等腰三角形的性質和三角形的外角性質依次求得∠A1AB、∠A2A1C、∠A3A2B、∠A4A3C的度數(shù),依此得到規(guī)律,再根據(jù)三角形外角小于90°,即可求解.

解:由題意可知:AO=A1AA1A=A2A1,…,則∠AOA1=OA1A,∠A1OA2=A1A2A,….

∵∠BOC=9°,∴∠A1AB=18°,∠A2A1C=27°,∠A3A2B=36°,∠A4A3C=45°,…,∴9°×n90°,解得:n10

由于n為整數(shù),故n最大為9

故選B

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】甲乙兩名運動員進行射擊選撥賽,每人射擊10次,其中射擊中靶情況如表:

第一次

第二次

第三次

第四次

第五次

第六次

第七次

第八次

第九次

第十次

7

10

8

10

9

9

10

8

10

9

10

7

10

9

9

10

8

10

7

10

1)選手甲的成績的中位數(shù)是   分;選手乙的成績的眾數(shù)是   分;

2)計算選手甲的平均成績和方差;

3)已知選手乙的成績的方差是15,則成績較穩(wěn)定的是哪位選手?請直接寫出結果.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖等邊三角形ABC的邊長為4,ADBC邊上的中線FAD邊上的動點,EAC邊上一點AE2EFCF取得最小值時,∠ECF的度數(shù)為( )

A. 20° B. 25° C. 30° D. 45°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,△ABD和△BCD都是等邊三角形,E、F分別是邊ADCD上的點,且DECF,連接BE、EFFB

求證:(1)△ABE≌△DBF;

2)△BEF是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】利用我們學過的知識,可以得出下面這個優(yōu)美的等式:

;該等式從左到右的變形,不僅保持了結構的對稱性,還體現(xiàn)了數(shù)學的和諧、簡潔美.

.請你證明這個等式;

.如果,請你求出 的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有、、三個居民小區(qū)的位置成三角形,現(xiàn)決定在三個小區(qū)之間修建一個購物超市,使超市到三個小區(qū)的距離相等,則超市應建在(

A.在∠A、∠B兩內角平分線的交點處

B.AC、BC兩邊垂直平分線的交點處

C.AC、BC兩邊高線的交點處

D.AC、BC兩邊中線的交點處

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,ABAC, M在△ABC內,點P在線段MC上,∠ABP=2ACM.

(1)若∠PBC=10°,BAC=80°,求∠MPB的值

(2)若點M在底邊BC的中線上,且BPAC,試探究∠A與∠ABP之間的數(shù)量關系,并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,D為⊙O上一點,點C在直徑BA的延長線上,且∠CDA=CBD.

(1)求證:CD是⊙O的切線;

(2)若BC=6,tanCDA=,求CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖所示直線y=kx+2(k0)與反比例函數(shù)y=(m0)分別交于點P,與y軸、x軸分別交于點A和點B,且cosABO=,過P點作x軸的垂線交于點C,連接AC,

(1)求一次函數(shù)的解析式.

(2)若AC是△PCB的中線,求反比例函數(shù)的關系式.

查看答案和解析>>

同步練習冊答案