【題目】如圖,在矩形ABCD中,E,F(xiàn)為BC上兩點(diǎn),且BE=CF,連接AF,DE交于點(diǎn)O.求證:
(1)△ABF≌△DCE;
(2)△AOD是等腰三角形.
【答案】
(1)
證明:在矩形ABCD中,∠B=∠C=90°,AB=DC,
∵BE=CF,BF=BC﹣FC,CE=BC﹣BE,
∴BF=CE,
在△ABF和△DCE中, ,
∴△ABF≌△DCE(SAS);
(2)
證明:∵△ABF≌△DCE,
∴∠BAF=∠EDC,
∵∠DAF=90°﹣∠BAF,∠EDA=90°﹣∠EDC,
∴∠DAF=∠EDA,
∴△AOD是等腰三角形.
【解析】(1)根據(jù)矩形的性質(zhì)可得∠B=∠C=90°,AB=DC,然后求出BF=CE,再利用“邊角邊”證明△ABF和△DCE全等即可;(2)根據(jù)全等三角形對應(yīng)角相等可得∠BAF=∠EDC,然后求出∠DAF=∠EDA,然后根據(jù)等腰三角形的定義證明即可.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解等腰三角形的判定的相關(guān)知識,掌握如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對的邊也相等(簡稱:等角對等邊).這個(gè)判定定理常用于證明同一個(gè)三角形中的邊相等,以及對矩形的性質(zhì)的理解,了解矩形的四個(gè)角都是直角,矩形的對角線相等.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市居民使用自來水按如下標(biāo)準(zhǔn)收費(fèi)(水費(fèi)按月繳納):
(1)當(dāng)a=2時(shí),某用戶一個(gè)月用了28 m3水,求該用戶這個(gè)月應(yīng)繳納的水費(fèi);
(2)設(shè)某戶月用水量為n 立方米,當(dāng)n>20時(shí),則該用戶應(yīng)繳納的水費(fèi)________元(用含a、n的整式表示);
(3)當(dāng)a=2時(shí),甲、乙兩用戶一個(gè)月共用水40m3 ,已知甲用戶繳納的水費(fèi)超過了24元,設(shè)甲用戶這個(gè)月用水xm3 ,試求甲、乙兩用戶一個(gè)月共繳納的水費(fèi)(用含x的整式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C為⊙O外一點(diǎn),過點(diǎn)C作⊙O的切線,切點(diǎn)為B,連結(jié)AC交⊙O于D,∠C=38°.點(diǎn)E在AB右側(cè)的半圓上運(yùn)動(dòng)(不與A、B重合),則∠AED的大小是( )
A.19°
B.38°
C.52°
D.76°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:拋物線C1:y=x2 . 如圖(1),平移拋物線C1得到拋物線C2 , C2經(jīng)過C1的頂點(diǎn)O和A(2,0),C2的對稱軸分別交C1、C2于點(diǎn)B、D.
(1)求拋物線C2的解析式;
(2)探究四邊形ODAB的形狀并證明你的結(jié)論;
(3)如圖(2),將拋物線C2向m個(gè)單位下平移(m>0)得拋物線C3 , C3的頂點(diǎn)為G,與y軸交于M.點(diǎn)N是M關(guān)于x軸的對稱點(diǎn),點(diǎn)P(﹣ m, m)在直線MG上.問:當(dāng)m為何值時(shí),在拋物線C3上存在點(diǎn)Q,使得以M、N、P、Q為頂點(diǎn)的四邊形為平行四邊形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的頂點(diǎn)為(0,4)且與x軸交于(﹣2,0),(2,0).
(1)直接寫出拋物線解析式;
(2)如圖,將拋物線向右平移k個(gè)單位,設(shè)平移后拋物線的頂點(diǎn)為D,與x軸的交點(diǎn)為A、B,與原拋物線的交點(diǎn)為P.
①當(dāng)直線OD與以AB為直徑的圓相切于E時(shí),求此時(shí)k的值;
②是否存在這樣的k值,使得點(diǎn)O、P、D三點(diǎn)恰好在同一條直線上?若存在,求出k值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】
(1)計(jì)算: ﹣2cos60°;
(2)先化簡:( ) ,再選擇一個(gè)恰當(dāng)?shù)膞值代入求值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形紙片ABCD中,AB=4,AD=3,折疊紙片使DA與對角線DB重合,點(diǎn)A落在點(diǎn)A′處,折痕為DE,則A′E的長是( 。
A.1
B.
C.
D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:P、Q分別是兩條線段a和b上任意一點(diǎn),線段PQ的長度的最小值叫做線段a與線段b的距離. 已知O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角坐標(biāo)系中四點(diǎn).
(1)根據(jù)上述定義,當(dāng)m=2,n=2時(shí),如圖1,線段BC與線段OA的距離是;當(dāng)m=5,n=2時(shí),如圖2,線段BC與線段OA的距離為;
(2)如圖3,若點(diǎn)B落在圓心為A,半徑為2的圓上,線段BC與線段OA的距離記為d,求d關(guān)于m的函數(shù)解析式.
(3)當(dāng)m的值變化時(shí),動(dòng)線段BC與線段OA的距離始終為2,線段BC的中點(diǎn)為M, ①求出點(diǎn)M隨線段BC運(yùn)動(dòng)所圍成的封閉圖形的周長;
②點(diǎn)D的坐標(biāo)為(0,2),m≥0,n≥0,作MH⊥x軸,垂足為H,是否存在m的值使以A、M、H為頂點(diǎn)的三角形與△AOD相似?若存在,求出m的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com