【題目】如圖,在△ABC中,∠C=90°,分別以點A,B為圓心,大于 AB長為半徑作弧,兩弧分別交于M,N兩點,過M,N兩點的直線交AC于點E,若AC=8,BC=6,則AE的長為(
A.2
B.3
C.
D.

【答案】D
【解析】解:∵由題意可知直線MN是線段AB的垂直平分線, ∴AE=BE.
設AE=BE=x,則CE=AC﹣x=8﹣x,
在Rt△BCE中,
∵BC2+CE2=BE2 , 即62+(8﹣x)2=x2 , 解得x=
故選D.
【考點精析】根據(jù)題目的已知條件,利用線段垂直平分線的性質(zhì)的相關知識可以得到問題的答案,需要掌握垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線;線段垂直平分線的性質(zhì)定理:線段垂直平分線上的點和這條線段兩個端點的距離相等.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,點O是△ABC的內(nèi)心,連接OB,OC,過點O作EF∥BC分別交AB,AC于點E,F(xiàn).已知△ABC的周長為8,BC=x,△AEF的周長為y,則表示y與x的函數(shù)圖象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若一個三位數(shù)的十位數(shù)字比個位數(shù)字和百位數(shù)字都大,則稱這個數(shù)為“傘數(shù)”.現(xiàn)從1,2,3,4這四個數(shù)字中任取3個數(shù),組成無重復數(shù)字的三位數(shù).
(1)請畫出樹狀圖并寫出所有可能得到的三位數(shù);
(2)甲、乙二人玩一個游戲,游戲規(guī)則是:若組成的三位數(shù)是“傘數(shù)”,則甲勝;否則乙勝.你認為這個游戲公平嗎?試說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線y=kx+b分別與x軸、y軸交于A、B兩點,過點B的拋物線y=﹣ (x﹣2)2+m的頂點P在這條直線上,以AB為邊向下方做正方形ABCD.

(1)當m=2時,k= , b=;當m=﹣1時,k= , b=;
(2)根據(jù)(1)中的結果,用含m的代數(shù)式分別表示k與b,并證明你的結論;
(3)當正方形ABCD的頂點C落在拋物線的對稱軸上時,求對應的拋物線的函數(shù)關系式;
(4)當正方形ABCD的頂點D落在拋物線上時,直接寫出對應的直線y=kx+b的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有兩條公路OM、ON相交成30°角,沿公路OM方向離O點80米處有一所學校A.當重型運輸卡車P沿道路ON方向行駛時,在以P為圓心50米長為半徑的圓形區(qū)域內(nèi)都會受到卡車噪聲的影響,且卡車P與學校A的距離越近噪聲影響越大.若已知重型運輸卡車P沿道路ON方向行駛的速度為18千米/時.

(1)求對學校A的噪聲影響最大時卡車P與學校A的距離;
(2)求卡車P沿道路ON方向行駛一次給學校A帶來噪聲影響的時間.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】據(jù)襄陽新聞報道2016年3月至2016年10月,襄陽閘口二路“大蝦一條街”共銷售大蝦6000余噸.2017年潛江養(yǎng)蝦專業(yè)戶張小花抓住商機,將自己養(yǎng)殖的大蝦銷往襄陽.計算了養(yǎng)殖成本以及運費等諸多因素,他發(fā)現(xiàn)大蝦的成本價為20元/公斤.經(jīng)過市場調(diào)查,一周的銷售量y公斤與銷售單價x(x≥30)元/公斤的關系如下表:

銷售單價x元/公斤

30

35

40

45

銷售量y公斤

500

450

400

350


(1)直接寫出y與x的函數(shù)關系式;
(2)若張小花一周的銷售利潤為W元,請求出W與x的函數(shù)關系式,并確定當銷售單價在什么范圍內(nèi)變化時,一周的銷售利潤隨著銷售單價的增大而增大?
(3)隨著賺的錢越來越多,張小花決定回饋社會將一周的銷售利潤全部捐給襄陽市福利院.若一周張小花的總成本不超過4000元,請求出張小花最大捐款數(shù)額是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,∠A=110°,E,F(xiàn)分別是邊AB和BC的中點,EP⊥CD于點P,則∠FPC的度數(shù)為(
A.55°
B.50°
C.45°
D.35°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,點D在BC邊上,且BD=BC,過點B作CD的垂線交AC于點O,以O為圓心,OC為半徑畫圓.
(1)求證:AB是⊙O的切線;
(2)若AB=10,AD=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為鼓勵學生參加體育鍛煉,學校計劃拿出不超過3200元的資金購買一批籃球和排球,已知籃球和排球的單價比為3:2,單價和為160元.
(1)籃球和排球的單價分別是多少元?
(2)若要求購買的籃球和排球的總數(shù)量是36個,且購買的排球數(shù)少于11個,有哪幾種購買方案?

查看答案和解析>>

同步練習冊答案