【題目】三角形兩邊的長(zhǎng)分別是8和6,第三邊的長(zhǎng)是一元二次方程的一個(gè)實(shí)數(shù)根,則該三角形的面積是
A. 24B. 24或C. 48或D.
【答案】B
【解析】
由,可利用因式分解法求得x的值,然后分別從x=6時(shí),是等腰三角形;與x=10時(shí),是直角三角形去分析求解即可求得答案.
∵,
∴(x6)(x10)=0,
解得:x1=6,x2=10,
當(dāng)x=6時(shí),則三角形是等腰三角形,如圖①,AB=AC=6,BC=8,AD是高,
∴BD=4,AD=,
∴S△ABC= BCAD=×8×2=8;
當(dāng)x=10時(shí),如圖②,AC=6,BC=8,AB=10,
∵AC2+BC2=AB2,
∴△ABC是直角三角形,∠C=90°,
S△ABC=BCAC=×8×6=24.
∴該三角形的面積是:24或8.
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列這些美麗的圖案都是在“幾何畫(huà)板”軟件中利用旋轉(zhuǎn)的知識(shí)在一個(gè)圖案的基礎(chǔ)上加工而成的,每一個(gè)圖案都可以看作是它的“基本圖案”繞著它的旋轉(zhuǎn)中心旋轉(zhuǎn)得來(lái)的,旋轉(zhuǎn)的角度正確的為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC 的一邊長(zhǎng)為 10,另兩邊長(zhǎng)分別是方程 x2 14 x 48 0 的兩個(gè)根若用一圓形紙片將此三角形完全覆蓋,則該圓形紙片的最小半徑是_______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,,
(1)如圖,是上的點(diǎn),過(guò)點(diǎn)作直線截,使截得的三角形與相似.例如:過(guò)點(diǎn)作交于,則截得的與相似.請(qǐng)你在圖中畫(huà)出所有滿足條件的直線.
(2)如圖,是上異于點(diǎn),的動(dòng)點(diǎn),過(guò)點(diǎn)作直線截,使截得的三角形與相似,直接寫(xiě)出滿足條件的直線的條數(shù).(不要求畫(huà)出具體的直線)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)G,H分別是正六邊形ABCDEF的邊BC,CD上的點(diǎn),且BG=CH,AG交BH于點(diǎn)P.
(1)求證:△ABG≌△BCH;
(2)求∠APH的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=ax+圖象與x軸,y軸分別相交于A、B兩點(diǎn),與反比例函數(shù)y=(k≠0)的圖象相交于點(diǎn)E、F,過(guò)F作y軸的垂線,垂足為點(diǎn)C,已知點(diǎn)A(﹣3,0),點(diǎn)F(3,t).
(1)求一次函數(shù)和反比例函數(shù)的表達(dá)式;
(2)求點(diǎn)E的坐標(biāo)并求△EOF的面積;
(3)結(jié)合該圖象寫(xiě)出滿足不等式﹣ax≤的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班“數(shù)學(xué)興趣小組”對(duì)函數(shù)的圖象和性質(zhì)進(jìn)行了探究,探究過(guò)程如下,請(qǐng)補(bǔ)充完整.
(1)自變量的取值范圍是全體實(shí)數(shù),與的幾組對(duì)應(yīng)值列表:
其中,________.
(2)根據(jù)表格數(shù)據(jù),在如圖所示的平面直角坐標(biāo)系中描點(diǎn),并畫(huà)出了函數(shù)圖象的一部分,請(qǐng)畫(huà)出該圖象的另一部分.
(3)觀察函數(shù)圖象,寫(xiě)出兩條函數(shù)的性質(zhì):
________;
________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)D在⊙O的直徑AB的延長(zhǎng)線上,CD切⊙O于點(diǎn)C,AE⊥CD于點(diǎn)E
(1)求證:AC平分∠DAE;
(2)若AB=6,BD=2,求CE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+6與x軸交于點(diǎn)A(6,0),B(﹣1,0),與y軸交于點(diǎn)C.
(1)求拋物線的解析式;
(2)若點(diǎn)M為該拋物線對(duì)稱軸上一點(diǎn),當(dāng)CM+BM最小時(shí),求點(diǎn)M的坐標(biāo).
(3)拋物線上是否存在點(diǎn)P,使△ACP為直角三角形?若存在,有幾個(gè)?寫(xiě)出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com