【題目】已知正方形,為射線上的一點(diǎn),以為邊作正方形,使點(diǎn)在線段的延長線上,連接
(1)如圖,若點(diǎn)在線段的延長線上,求證:;
(2)如圖,若點(diǎn)在線段的中點(diǎn),連接,判斷的形狀,并說明理由;
(3)如圖,若點(diǎn)在邊上,連接,當(dāng)平分時,設(shè),求度數(shù).
【答案】(1)證明見解析;(2)△ACE是直角三角形;(3)
【解析】
(1)根據(jù)正方形的性質(zhì)證明△APE≌△CFE,可得結(jié)論;
(2)分別證明∠PAE=45°和∠BAC=45°,則∠CAE=90°,即△ACE是直角三角形;
(3)分別計(jì)算PG和BG的長,再計(jì)算GH和BG的長,根據(jù)角平分線的逆定理得:∠HCG=∠BCG,由平行線的性質(zhì)得到∠AEC=∠ACB=45°.
解:(1)∵四邊形和四邊形是正方形,
,
∵
,
(2)是直角三角形
∵為的中點(diǎn)
又∵
又∵
,即是直角三角形
(3)如圖,設(shè)交于點(diǎn),
∵平分,
,
作
又∵
又∵
∵
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CD是⊙O的直徑,CB是⊙O的弦,點(diǎn)A在CD的延長線上,過點(diǎn)C作CE⊥AB,交AB的延長線于點(diǎn)E,且CB平分∠ACE.
(1)求證:直線AB是⊙O的切線;
(2)若BE=3,CE=4,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解九年級學(xué)生體育測試情況,以901班學(xué)生的體育測試成績?yōu)闃颖荆?/span>A.B.C.D四個等級進(jìn)行統(tǒng)計(jì),并將結(jié)果繪制如下兩幅統(tǒng)計(jì)圖,請你結(jié)合圖中所給信息解答下列問題:(A級:90分及以上;B級:75分~89分;C級:60分~74分;D級:60分以下.注:分?jǐn)?shù)均為整數(shù)值)
(1)請把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)求樣本中D級的學(xué)生人數(shù)占全班學(xué)生人數(shù)的百分比;
(3)求扇形統(tǒng)計(jì)圖中A級所在的扇形的圓心角度數(shù);
(4)若該校九年級有400名學(xué)生,且75分及以上記為“滿分”,請你用此樣本估計(jì)該校體育測試中獲得“滿分”的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,,點(diǎn)是線段上一點(diǎn),將沿翻折得到,且滿足. 若反比例函數(shù)圖象經(jīng)過點(diǎn),則的值為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)(為常數(shù)),在自變量的值滿足情況下,與其對應(yīng)的函數(shù)值的最小值為,則的值為( )
A. 或4B. 或C. 或D. 或
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在水果銷售旺季,某水果店購進(jìn)一優(yōu)質(zhì)水果,進(jìn)價(jià)為20元/千克,售價(jià)不低于20元/千克,且不超過32元/千克,根據(jù)銷售情況,發(fā)現(xiàn)該水果一天的銷售量y(千克)與該天的售價(jià)x(元/千克)滿足如下表所示的一次函數(shù)關(guān)系.
銷售量y(千克) | … | 34.8 | 32 | 29.6 | 28 | … |
售價(jià)x(元/千克) | … | 22.6 | 24 | 25.2 | 26 | … |
(1)某天這種水果的售價(jià)為23.5元/千克,求當(dāng)天該水果的銷售量.
(2)如果某天銷售這種水果獲利150元,那么該天水果的售價(jià)為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)藝術(shù)節(jié)期間,學(xué)校向?qū)W生征集書畫作品,楊老師從全校30個班中隨機(jī)抽取了4個班(用A,B,C,D表示),對征集到的作品的數(shù)量進(jìn)行了分析統(tǒng)計(jì),制作了兩幅不完整的統(tǒng)計(jì)圖.
請根據(jù)以上信息,回答下列問題:
(1)楊老師采用的調(diào)查方式是 (填“普查”或“抽樣調(diào)查”);
(2)請你將條形統(tǒng)計(jì)圖補(bǔ)充完整,并估計(jì)全校共征集多少件作品?
(3)如果全校征集的作品中有5件獲得一等獎,其中有3名作者是男生,2名作者是女生,現(xiàn)要在獲得一等獎的作者中選取兩人參加表彰座談會,請你用列表或樹狀圖的方法,求恰好選取的兩名學(xué)生性別相同的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分8分) 青少年沉迷于手機(jī)游戲,嚴(yán)重危害他們的身心健康,此問題已引起社會各界的高度關(guān)注,有關(guān)部門在全國范圍內(nèi)對12﹣35歲的“王者榮耀”玩家進(jìn)行了簡單的隨機(jī)抽樣調(diào)查,繪制出以下兩幅統(tǒng)計(jì)圖.
請根據(jù)圖中的信息,回答下列問題:
(1)這次抽樣調(diào)查中共調(diào)查了 人;
(2)扇形統(tǒng)計(jì)圖中18﹣23歲部分的圓心角的度數(shù)是_________;
(3)據(jù)報(bào)道,目前我國12﹣35歲“王者榮耀”玩家的人數(shù)約為2000萬,請估計(jì)其中12﹣23歲的人數(shù).
(4)根據(jù)對統(tǒng)計(jì)圖表的分析,請你為沉迷游戲的同學(xué)提一個合理化建議.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了改善辦公條件,計(jì)劃從廠家購買兩種型號電腦.已知每臺種型號電腦價(jià)格比每臺種型號電腦價(jià)格多0.1萬元,且用10萬元購買種型號電腦的數(shù)量與用8萬購買種型號電腦的數(shù)量相同.
(1)求兩種型號電腦每臺價(jià)格各為多少萬元?
(2)學(xué)校預(yù)計(jì)用不多于9.2萬元的資金購進(jìn)這兩種電腦共20臺,其中種型號電腦至少要購進(jìn)10臺,請問有哪幾種購買方案?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com