【題目】如圖,在梯形ABCD中,AD∥BC,AD=1,BC=4,AC=3,BD=4,則梯形ABCD的面積為______.
【答案】6
【解析】
過點D作DE∥AC,交BC的延長線于點E,得四邊形ACED是平行四邊形,則DE=AC=3,CE=AD=1.根據(jù)勾股定理的逆定理即可證明三角形BDE是直角三角形.根據(jù)梯形的面積即為直角三角形BDE的面積進行計算.
解:過點D作DE∥AC,交BC的延長線于點E,
則四邊形ACED是平行四邊形,
∴DE=AC=3,CE=AD=1,
在三角形BDE中,∵BD=4,DE=3,BE=5,
∴根據(jù)勾股定理的逆定理,得三角形BDE是直角三角形,
∵四邊形ACED是平行四邊形
∴AD=CE,
∴AD+BC=BE,
∵梯形ABCD與三角形BDE的高相等,
∴梯形的面積即是三角形BDE的面積,即3×4÷2=6,
故答案是:6.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,C為線段AD上一點,點B為CD的中點,且AD=9,BD=2.
(1)求AC的長;
(2)若點E在直線AD上,且EA=1,求BE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,4張如圖1的長為a,寬為b(a>b)長方形紙片,按圖2的方式放置,陰影部分的面積為S1,空白部分的面積為S2,若S2=2S1,則a,b滿足( 。
A. a=B. a=2bC. a=bD. a=3b
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列調(diào)查中,①檢測深圳的空氣質量; ②為了解某中東呼吸綜合征(MERS)確診病人同一架飛機乘客的健康情況;③為保證“神舟9號”成功發(fā)射,對其零部件進行檢查;④調(diào)查某班50名同學的視力情況。其中適合采用抽樣調(diào)查的是( )
A. ①B. ②C. ③D. ④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,點O是邊AC上一個動點,過O作直線MN∥BC.設MN交∠ACB的平分線于點E,交∠ACB的外角平分線于點F.
(1)求證:OE=OF;
(2)若CE=12,CF=5,求OC的長;
(3)當點O在邊AC上運動到什么位置時,四邊形AECF是矩形?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為了了解七年級學生體育測試情況,以七年級(1)班學生的體育測試成績?yōu)闃颖,?/span>A、B、C、D四個等級進行統(tǒng)計,并將統(tǒng)計結果繪制如下的統(tǒng)計圖,請你結合圖中所給的信息解答下列問題:
(說明:A級:90分~100分;B級:75分~89分;C級:60分~74分;D級:60分以下)
(1)請把條形統(tǒng)計圖補充完整;
(2)扇形統(tǒng)計圖中D級所在的扇形的圓心角度數(shù)是 ;
(3)若該校七年級有600名學生,請用樣本估計體育測試中A級學生人數(shù)約為多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A、B分別在數(shù)軸原點O的兩側,且OB+8=OA,點A對應數(shù)是20.
(1)求B點所對應的數(shù);
(2)動點P、Q、R分別從B、O、A同時出發(fā),其中P、Q均向右運動,速度分別為2個單位長度/秒,4個單位長度/秒,點R向左運動,速度為5個單位長度/秒,設它們的運動時間為t秒,當點R恰好為PQ的中點時,求t的值及R所表示的數(shù);
(3)當時,BP+AQ的值是否保持不變?若不變,直接寫出定值;若變化,試說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校七(1)班學生的平均身高是160厘米,下表給出了該班6名學生的身高情況(單位:厘米).
學 生 | A | B | C | D | E | F |
身 高 | 157 | 162 | 159 | 154 | 163 | 165 |
身高與平均身高的差值 | -3 | +2 | -1 | a | +3 | b |
(1)列式計算表中的數(shù)據(jù)a和b;
(2)這6名學生中誰最高?誰最矮?最高與最矮學生的身高相差多少?
(3)這6名學生的平均身高與全班學生的平均身高相比,在數(shù)值上有什么關系?(通過計算回答)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com