【題目】如圖,在平面直角坐標(biāo)系中,已知ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別是A(﹣4,1),B(﹣1,2),C(﹣24.

1)將ABC向右平移4個(gè)單位后得到A1B1C1,請(qǐng)畫出A1B1C1,并寫出點(diǎn)B1的坐標(biāo);

2A2B2C2A1B1C1關(guān)于原點(diǎn)O中心對(duì)稱,請(qǐng)畫出A2B2C2,并寫出點(diǎn)C2的坐標(biāo);

3)連接點(diǎn)A和點(diǎn)B2,點(diǎn)B和點(diǎn)A2,得到四邊形AB2A2B,試判斷四邊形AB2A2B的形狀(無須說明理由).

【答案】1)如圖,△A1B1C1為所作;見解析;點(diǎn)B1的坐標(biāo)為(3,2);(2)如圖,△A2B2C2為所作;見解析;點(diǎn)C2的坐標(biāo)為(﹣2,﹣4);(3)如圖,四邊形AB2A2B為正方形.

【解析】

1)利用網(wǎng)格特點(diǎn)和點(diǎn)平移的坐標(biāo)規(guī)律寫出、的坐標(biāo),然后描點(diǎn)即可得到△;

2)利用網(wǎng)格特點(diǎn)和關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)特征寫出、、的坐標(biāo),然后描點(diǎn)即可得到△;

3)證明四條相等且對(duì)角線相等可判斷四邊形為正方形.

解:(1)如圖1,△為所作;點(diǎn)的坐標(biāo)為

2)如圖1,△為所作;點(diǎn)的坐標(biāo)為

3)如圖1,四邊形為正方形,

(理由:如圖2,在四邊形外側(cè)構(gòu)造如圖所示直角三角形,由坐標(biāo)網(wǎng)格的特點(diǎn)易證四個(gè)直角三角形全等,從而可得四邊形四邊都相等,四個(gè)角等于直角)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與軸交于兩點(diǎn),與軸交于點(diǎn),且對(duì)稱軸為直線,點(diǎn)坐標(biāo)為.則下面的四個(gè)結(jié)論:①;②;③;④當(dāng)時(shí),.其中正確的是(

A.①②B.①③C.①④D.②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】實(shí)踐操作

如圖,是直角三角形,,利用直尺和圓規(guī)按下列要求作圖,并在圖中表明相應(yīng)的字母.(保留作圖痕跡,不寫作法)

1)①作的平分線,交于點(diǎn);②以為圓心,為半徑作圓.

綜合運(yùn)用

在你所作的圖中,

2與⊙的位置關(guān)系是   ;(直接寫出答案)

3)若,求⊙的半徑.

4)在(3)的條件下,求以為軸把ABC旋轉(zhuǎn)一周得到的圓錐的側(cè)面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,邊長(zhǎng)為1的正方形OA1B1C1的兩邊在坐標(biāo)軸上,以它的對(duì)角線OB1為邊作正方形OB1B2C2,再以正方形OB1B2C2的對(duì)角線OB2為邊作正方形OB2B3C3,以此類推…則正方形OB2015B2016C2016的頂點(diǎn)B2016的坐標(biāo)是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形ABCD中,BD是一條對(duì)角線,點(diǎn)E在直線CD上(與點(diǎn)C,D不重合),連接AE,平移△ADE,使點(diǎn)D移動(dòng)到點(diǎn)C,得到△BCF,過點(diǎn)F作FG⊥BD于點(diǎn)G,連接AG,EG.

(1)問題猜想:如圖1,若點(diǎn)E在線段CD上,試猜想AG與EG的數(shù)量關(guān)系是____________,位置關(guān)系是____________;

(2)類比探究:如圖2,若點(diǎn)E在線段CD的延長(zhǎng)線上,其余條件不變,小明猜想(1)中的結(jié)論仍然成立,請(qǐng)你給出證明;

(3)解決問題:若點(diǎn)E在線段DC的延長(zhǎng)線上,且∠AGF=120°,正方形ABCD的邊長(zhǎng)為2,請(qǐng)?jiān)趥溆脠D中畫出圖形,并直接寫出DE的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,若b是正數(shù).直線lyby軸交于點(diǎn)A,直線ayxby軸交于點(diǎn)B;拋物線Ly=﹣x2+bx的頂點(diǎn)為C,且Lx軸右交點(diǎn)為D

(1)AB6,求b的值,并求此時(shí)L的對(duì)稱軸與a的交點(diǎn)坐標(biāo);

(2)當(dāng)點(diǎn)Cl下方時(shí),求點(diǎn)Cl距離的最大值;

(3)設(shè)x0≠0,點(diǎn)(x0,y1),(x0,y2)(x0,y3)分別在l,aL上,且y3y1y2的平均數(shù),求點(diǎn)(x00)與點(diǎn)D間的距離;

(4)在La所圍成的封閉圖形的邊界上,把橫、縱坐標(biāo)都是整數(shù)的點(diǎn)稱為“美點(diǎn)”,分別直接寫出b=2019和b2019.5時(shí)“美點(diǎn)”的個(gè)數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在同一直角坐標(biāo)系中,二次函數(shù)y=x2-2x-3的圖象與兩坐標(biāo)軸分別交于點(diǎn)A點(diǎn) B和點(diǎn)C,一次函數(shù)的圖象與拋物線交于B、C兩點(diǎn).

(1)將這個(gè)二次函數(shù)化為的形式為

(2)當(dāng)自變量滿足 時(shí),兩函數(shù)的函數(shù)值都隨增大而增大。

(3)當(dāng)自變量滿足 時(shí),一次函數(shù)值大于二次函數(shù)值。

(4)當(dāng)自變量滿足 時(shí),兩個(gè)函數(shù)的函數(shù)值的積小于0。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線y=ax2+4x+c(a≠0)經(jīng)過點(diǎn)A(3,﹣4)和B(0,2).

(1)求拋物線的表達(dá)式和頂點(diǎn)坐標(biāo);

(2)將拋物線在A、B之間的部分記為圖象M(含A、B兩點(diǎn)).將圖象M沿直線x=3翻折,得到圖象N.若過點(diǎn)C(9,4)的直線y=kx+b與圖象M、圖象N都相交,且只有兩個(gè)交點(diǎn),求b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線(m,n 為常數(shù))

1)若拋物線的的對(duì)稱軸為直線 x=1,且經(jīng)過點(diǎn)(0-1),求 m,n 的值;

2)若拋物線上始終存在不重合的兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱,求 n 的取值范圍;

3)在(1)的條件下,存在正實(shí)數(shù) ab( ab),當(dāng) axb 時(shí),恰好有,請(qǐng)直接寫出 ab 的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案