【題目】實踐操作
如圖,是直角三角形,,利用直尺和圓規(guī)按下列要求作圖,并在圖中表明相應的字母.(保留作圖痕跡,不寫作法)
(1)①作的平分線,交于點;②以為圓心,為半徑作圓.
綜合運用
在你所作的圖中,
(2)與⊙的位置關系是 ;(直接寫出答案)
(3)若,,求⊙的半徑.
(4)在(3)的條件下,求以為軸把△ABC旋轉一周得到的圓錐的側面積.
【答案】(1)解解析;(2)相切;(3);(4).
【解析】
(1)先作基本圖形(作一個角的平分線)得到點O,然后作⊙O;
(2)作OE⊥AB于E,根據(jù)角平分線性質可得OE=OC,則可根據(jù)切線的判定定理得到AB為⊙O的切線;
(3)設⊙O的半徑為r,則OC=OE=r,先利用勾股定理計算出AB=13,再利用三角形面積公式得到S△AOB+S△AOC=S△ABC,代入,然后解方程即可;
(4)根據(jù)圓錐的側面積公式可得結論.
(1)如圖1所示;
(2)直線AB與⊙O相切,理由是:
如圖1,作OE⊥AB于E,
∵AO平分∠BAC,
而OE⊥AB,OC⊥AC,
∴OE=OC,
∴AB為⊙O的切線;
故答案為:相切;
(3)設⊙O的半徑為r,則OC=OE=r,
在Rt△ABC中,∵AC=5,BC=12,
∴AB==13,
∵S△AOB+S△AOC=S△ABC,
∴×13r+×5r=×5×12,解得r=,
即⊙O的半徑為.
(4)如圖2,S側=πACAB=π×5×13=65π.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,∠C=90°,BC=16,DC=12,AD=21,動點P從點D出發(fā),沿射線DA的方向以每秒2個單位長度的速度運動,動點Q從點C出發(fā),在線段CB上以每秒1個單位長度的速度向點B運動,點P,Q分別從點D,C同時出發(fā),當點Q運動到點B時,點P隨之停止運動.設運動的時間為t(秒).
(1)設△BPQ的面積為S,求S與t之間的函數(shù)關系式;
(2)當t為何值時,以B,P,Q三點為頂點的三角形是等腰三角形?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將進貨單價為40元的商品按50元售出,能售出500件,如果該商品漲價1元,其銷售量就要減少10件,為了賺取8000元的利潤,售價應定為多少元?這時應進貨多少件?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形OABC在平面直角坐標系中,點A在y軸上,點C在軸上,OC=4,直線經過點A,交軸于點D,點E在線段BC上,ED⊥AD.
(1)求點E的坐標;
(2)聯(lián)結BD,求cot∠BDE的值;
(3)點G在直線BC,且∠EDG=45°,求點G的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知在△ABC中,∠BAC>90°,點D為BC的中點,點E在AC上,將△CDE沿DE折疊,使得點C恰好落在BA的延長線上的點F處,連結AD,則下列結論不一定正確的是( )
A. AE=EF B. AB=2DE
C. △ADF和△ADE的面積相等 D. △ADE和△FDE的面積相等
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】以下說法合理的是( 。
A. 小明做了3次擲圖釘?shù)膶嶒,發(fā)現(xiàn)2次釘尖朝上,由此他說釘尖朝上的概率是
B. 某彩票的中獎概率是5%,那么買100張彩票一定有5張中獎
C. 某射擊運動員射擊一次只有兩種可能的結果:中靶與不中靶,所以他擊中靶的概率是
D. 小明做了3次擲均勻硬幣的實驗,其中有一次正面朝上,2次正面朝下,他認為再擲一次,正面朝上的概率還是
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,平面直角坐標系中,B、C兩點的坐標分別為B(0,3)和C(0,﹣),點A在x軸正半軸上,且滿足∠BAO=30°.
(1)過點C作CE⊥AB于點E,交AO于點F,點G為線段OC上一動點,連接GF,將△OFG沿FG翻折使點O落在平面內的點O′處,連接O′C,求線段OF的長以及線段O′C的最小值;
(2)如圖2,點D的坐標為D(﹣1,0),將△BDC繞點B順時針旋轉,使得BC⊥AB于點B,將旋轉后的△BDC沿直線AB平移,平移中的△BDC記為△B′D′C′,設直線B′C′與x軸交于點M,N為平面內任意一點,當以B′、D′、M、N為頂點的四邊形是菱形時,求點M的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com