已知:如圖,在△ABC中,如果∠A是銳角,點(diǎn)D,E分別在AB,AC上,且∠DCB=∠EBC=
12
∠A.
求證:BD=CE.
分析:首先證明△BCF≌△CBG,再得出∠BDF=∠BEC進(jìn)而得出△BDF≌△CEG問(wèn)題得證.
解答:證法一:如圖1,作CG⊥BE于G點(diǎn),作BF⊥CD交CD延長(zhǎng)線于F點(diǎn).
∵CG⊥BE,BF⊥CD,
∴∠F=∠CGB=90°,
在△BCF和△CBG中,
∠F=∠CGB=90°
∠DCB=∠EBC
BC=BC
,
∴△BCF≌△CBG(AAS),
∴BF=CG,
∵∠BDF=∠ABE+∠EBC+∠DCB,
∠BEC=∠ABE+∠A,
∴∠BDF=∠BEC,
∵在△BDF和△CEG中,
∠F=∠CGE
∠GEC=∠FDB
BF=CG

∴△BDF≌△CEG(AAS),
∴BD=CE.

證法二:如圖2,以C為頂點(diǎn)作∠FCB=∠DBC,CF交BE于F點(diǎn).
∵在△BDC和△CFB中,
∠FCB=∠DBC
BC=BC
∠FBC=∠DCB

∴△BDC≌△CFB(SAS),
∴BD=CF,∠BDC=∠CFB,
∴∠ADC=∠CFE,
∵∠ADC=∠DCB+∠EBC+∠ABE,
∠FEC=∠A+∠ABE,
∴∠ADC=∠FEC,
∴∠FEC=∠CFE,
∴CF=CE,
∴BD=CE.
點(diǎn)評(píng):此題主要考查了全等三角形的判定與性質(zhì),關(guān)鍵是熟練掌握證明三角形全等的判定定理:SSS、SAS、AAS、ASA,HL.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

34、已知:如圖,在AB、AC上各取一點(diǎn),E、D,使AE=AD,連接BD,CE,BD與CE交于O,連接AO,∠1=∠2,
求證:∠B=∠C.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•啟東市一模)已知,如圖,在Rt△ABC中,∠C=90°,∠BAC的角平分線AD交BC邊于D.
(1)以AB邊上一點(diǎn)O為圓心,過(guò)A,D兩點(diǎn)作⊙O(不寫(xiě)作法,保留作圖痕跡),再判斷直線BC與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若(1)中的⊙O與AB邊的另一個(gè)交點(diǎn)為E,半徑為2,AB=6,求線段AD、AE與劣弧DE所圍成的圖形面積.(結(jié)果保留根號(hào)和π)《根據(jù)2011江蘇揚(yáng)州市中考試題改編》

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,在△ABC中,∠C=120°,邊AC的垂直平分線DE與AC、AB分別交于點(diǎn)D和點(diǎn)E.
(1)作出邊AC的垂直平分線DE;
(2)當(dāng)AE=BC時(shí),求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知:如圖,在AB、AC上各取一點(diǎn)E、D,使AE=AD,連接BD,CE,BD與CE交于O,連接AO,∠1=∠2,
求證:∠B=∠C.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:專項(xiàng)題 題型:證明題

已知:如圖,在AB、AC上各取一點(diǎn),E、D,使AE=AD,連結(jié)BD,CE,BD與CE交于O,連結(jié)AO,
           ∠1=∠2;
求證:∠B=∠C

查看答案和解析>>

同步練習(xí)冊(cè)答案