【題目】如圖,△ABC三個頂點的坐標分別為A(1,1),B(4,2),C(3,4).

(1)請畫出△ABC繞O點逆時針旋轉(zhuǎn)90°得到△A1B1C1,請畫出△A1B1C1

(2)在x軸上求作一點P,使△PA1C1的周長最小,并直接寫出P的坐標.

【答案】(1)見解析(2)(2,0)

【解析】

(1)根據(jù)旋轉(zhuǎn)的性質(zhì),確定A、B、C的旋轉(zhuǎn)90°的旋轉(zhuǎn)點,連接即可;

(2)AB的長是不變的,要使△PAB的周長最小,即要求PA+PB最小,轉(zhuǎn)為了已知直線與直線一側(cè)的兩點,在直線上找一個點,使這點到已知兩點的線段之和最小,方法是作A、B兩點中的某點關(guān)于該直線的對稱點,然后連接對稱點與另一點.

(1)如圖所示,△A1B1C1即為所求的三角形

(2)如圖所示,點P(2,0)即為所求的點.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系xOy中,直線yx+2與雙曲線相交于點Am,3).

(1)求反比例函數(shù)的表達式;

(2)畫出直線和雙曲線的示意圖;

(3)若P是坐標軸上一點,當OAPA時.直接寫出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形OABC,點P在邊OA上(不與端點重合),點Q在邊CO上(不與端點重合).

(1)如圖(1),若∠BPQ=90°,且△OPQ與△PAB和△QPB相似,請寫出表示這三個三角形相似的式子,并探究此時線段OQ、QB、BA之間的數(shù)量關(guān)系.

(2)若∠PQB=90°,且△OPQ與△PAB、△QPB都相似,如圖(2),請重新寫出表示這三個三角形相似的式子,并證明ABOA=2:3.

(3)在(1)中,若OA=8OC=8,OPCQ.以矩形OABC的兩邊OAOC所在的直線分別為x軸和y軸,建立平面直角坐標系,如圖(3),若某拋物線頂點為P,點B在拋物線上.

①求此拋物線的解析式.

②過線段BP上一動點M(點M與點PB不重合),作y軸的平行線交拋物線于點N,若記點M的橫坐標為m,試求線段MN的長Lm之間的函數(shù)關(guān)系式,畫出該函數(shù)的示意圖,并指出m取何值時,L有最大值,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在x軸的正半軸上依次截取OA1A1A2A2A3A3A4A4A5,過點A1、A2、A3A4、A5分別作x軸的垂線與反比例函數(shù)yx≠0)的圖象相交于點P1、P2、P3、P4、P5,得直角三角形OP1A1、A1P2A2,A2P3A3,A3P4A4,A4P5A5,并設(shè)其面積分別為S1、S2、S3、S4、S5,則S10_____.(n≥1的整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O為線段AB的中點,AB=4cm,P1、P2、P3、P4到點O的距離分別是1cm、2cm、2.8cm、1.7cm,下列四點中能與A、B構(gòu)成直角三角形的頂點是(  )

A. P1 B. P2 C. P3 D. P4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形OABC在平面直角坐標系中,若x2﹣2x+2=0的兩根是x1、x2,且OC=x1+x2,OA=x1x2

(1)求B點的坐標.

(2)把△ABC沿AC對折,點B落在點B′處,線段AB′與x軸交于點D,求直線BD的解析式.

(3)在平面上是否存在點P,使D、C、B、P四點形成的四邊形為平形四邊形?若存在,請直接寫出P點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CDAB,垂足為H,連結(jié)AC,過弧BD上一點EEGACCD的延長線于點G,連結(jié)AECD于點F,且EGFG,連結(jié)CE

1)求證:ECF∽△GCE

2)求證:EG是⊙O的切線;

3)延長ABGE的延長線于點M,若tanG,AH3,求EM的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,經(jīng)過原點O的拋物線(a0)與x軸交于另一點A(,0),在第一象限內(nèi)與直線y=x交于點B(2,t).

(1)求這條拋物線的表達式;

(2)在第四象限內(nèi)的拋物線上有一點C,滿足以B,O,C為頂點的三角形的面積為2,求點C的坐標;

(3)如圖2,若點M在這條拋物線上,且MBO=ABO,在(2)的條件下,是否存在點P,使得POC∽△MOB?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O的半徑是2,直線O相交于A、B兩點,M、N是O上的兩個動點,且在直線的異側(cè),若AMB=45°,則四邊形MANB面積的最大值是

A. B C D

查看答案和解析>>

同步練習(xí)冊答案