關(guān)于x的一元二次方程(x-a)2=b,下列說法中正確的是( 。
A、有兩個解±
b
B、當(dāng)b≥0時,有兩個解±
b
+a
C、當(dāng)b≥0時,有兩個解±
b
-a
D、當(dāng)b≤0時,方程無實數(shù)根
分析:本題要先考慮b的取值范圍,然后再根據(jù)每種情況分別討論,計算即可判斷正確的答案.
解答:解:∵方程中的b不確定
∴當(dāng)b<0,方程無實數(shù)根
當(dāng)b≥0時,x-a=±
b
,即方程有兩個解±
b
+a.
故選B.
點評:主要考查直接開平方法解方程.
(1)用直接開方法求一元二次方程的解的類型有:x2=a(a≥0);ax2=b(a,b同號且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同號且a≠0).
法則:要把方程化為“左平方,右常數(shù),先把系數(shù)化為1,再開平方取正負(fù),分開求得方程解”.
(2)運用整體思想,會把被開方數(shù)看成整體.
(3)用直接開方法求一元二次方程的解,要仔細(xì)觀察方程的特點.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•北侖區(qū)二模)若關(guān)于x的一元二次方程a(x+m)2=3兩個實根為x1=-1,x2=3,則拋物線y=a(x+m-2)2-3與x軸的交點橫坐標(biāo)分別是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知方程(m-2)xm2-5m-8+(m-3)x+5=0是關(guān)于x的一元二次方程,則m=
65
2
65
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•沈陽)若關(guān)于x的一元二次方程x2+4x+a=0有兩個不相等的實數(shù)根,則a的取值范圍是
a<4
a<4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•蘭州一模)若x1,x2是關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)的兩個根,則方程的兩個根x1,x2和系數(shù)a,b,c有如下關(guān)系:x1+x2=-
b
a
,x1•x2=
c
a
,把它們稱為一元二次方程根與系數(shù)關(guān)系定理,請利用此定理解答一下問題:
已知x1,x2是一員二次方程(m-3)x2+2mx+m=0的兩個實數(shù)根.
(1)是否存在實數(shù)m,使-x1+x1x2=4+x2成立?若存在,求出m的值,若不存在,請你說明理由;
(2)若|x1-x2|=
3
,求m的值和此時方程的兩根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•瀘州)若關(guān)于x的一元二次方程kx2-2x-1=0有兩個不相等的實數(shù)根,則實數(shù)k的取值范圍是( 。

查看答案和解析>>

同步練習(xí)冊答案